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Abstract

This work focuses on realities of implementing an abstract datatype that tra-
verses in�nite aperiodic tilings of the plane and three-space. The approach is to
develop a generalized mechanism for specifying �nite sets of prototiles that tile
space nonperiodically. When the tiling exhibits an invertable in
ation property,
tiles may be addressed in a way that supports arbitrary, possibly oriented, wan-
derings through space. Techniques are presented that can be used to discover lines
of symmetry in a tiling and to construct an atlas of its local con�gurations. Also
developed are a number of theoretical results about this class of tilings, including a
concise statement of a local isomorphism theorem. This pretty result suggests that
any �nite portion of a speci�c tiling by prototiles appears in�nitely often in all other
tilings by the same set of tiles.

Our analysis is inspired by the index sequences that are commonly used to
uniquely specify tilings. An index sequence identi�es a tiling about a point by
locating the point within an in�nte hierarchy of self-similar tilings known as in
a-
tions. Our work builds an addressing system with index sequences of �nite rather
than in�nite length and uses addresses to represent the dual graph of a patch of tiles.
An n-digit address identi�es a tile within n in
ations of some prototile. We prove
that any tiling represented in our form can tile the plane or space and must do so
nonperiodically. An algorithm is constructed to �nd the addresses neighboring any
given tile. Appending digits to an address extends the currently represented region,
placing it within a larger patch to simulate the exploration of an in�nite expanse of
tiles. The information maintained grows as needed and the number of digits stored
is logarithmic in the number of tiles in the patch represented. Our system could
be used to investigate very large quasiperiodic tilings and the principles behind the
data structures illuminate many beautiful properties of the tilings themselves.
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Chapter 1

Background

In 1966, Berger discovered a set of 20,426 shapes that will only tile the plane aperi-
odically. By 1974, R. Penrose had discovered an aperiodic set of just two shapes. A
�nite collection of shapes that tile the plane is called a set of prototiles It is currently
an open question whether a single prototile exists that forces an aperiodic tiling.
Penrose tilings can be decorated with Ammann lines: line segments placed on the
prototiles connect to form a grid of parallel lines passing through the tiling. Two
lengths of intervals separate successive parallel lines: long and short. The pattern
of long and short intervals formed is quasiperiodic and is a pattern known as the
Fibonacci sequence.

1.1 Quasicrystals

Today, there are a number of techniques for generating quasiperiodic tilings and
lattices with any symmetry in two, three, or more dimensions[Ste86]. Janot, Dubois,
and Boisseiu[JDdB89] present an overview of matching rules, in
ation, projection,
and generalized dual techniques.

One method follows the technique used by Penrose[Pen84]. Many sets of pro-
totiles can be assembled to produce an aperiodic tiling of the plane. It is more
challenging, however, to �nd a set of prototiles such so that every tiling of the plane
composed of these prototiles is aperiodic. Penrose developed matching rules for his
set of two rhombuses that limit the ways that tiles are allowed to neighbor other
tiles, and this prevents Penrose's tiles from forming any periodic tilings. If local
rules are used as a mechanism for growing nonperiodic structures, backtracking is
required since some placements allowed by the local rules result in patches that
are impossible to extend to form a tiling. However, any tiling formed according

1



CHAPTER 1. BACKGROUND 2

to local rules is guaranteed to be aperiodic. Local matching rules have attracted
considerable attention. G�ahler, Baake, and Schlottmann[GBS94] study the relation-
ship between the unmarked shapes of tiles and matching rules that can be used to
constrain their placement so that only nonperiodic tilings can be formed. Klitzing
and Baake[KB94] investigate a stronger form of local rules for tilings with eight and
twelve-fold rotational symmetry. Sometimes it is the case that a patch of tiles can
be constructed so that at all times at least one placement is forced . That is, there
is always some spot at which no other tile can be placed and thus such a tiling
can be grown by using matching rules without backtracking. Conway discovered
that this is even the case if certain defects are placed at the center of a tiling by
Penrose's kites and darts.[SG91] Other approaches use growth rules that are local
except that tiles that are forced are always added �rst. Steinhardt, DiVincenze,
and Socolar[OSDS88] grow defect-free tilings by Penrose rhombuses by adding a
thick rhombus in a particular way whenever there are no forced placements. Later,
Socolar[Soc91] uses a similar technique to analyze the stages of growth of a tiling
by Penrose rhombs and presents a physical model that uses random probabilities to
account for the condition when no vertices are forced.

A Penrose tiling also obeys a self-similarity property called in
ation. The tiles
of any Penrose tiling can be attached together to form a tiling made up of larger,
equivalent pieces. This process can be repeated to form tilings by arbitrarily large
pieces. In
ation and matching rules are used to prove that the Penrose rhombuses
tile the plane and can do so only nonperiodically. Other types of tilings can be
proven aperiodic by use of similar methods. Our approach for representing tilings
relies exclusively on this approach for generating tilings. We de�ne in
ation precisely
in Chapter 4.

Another approach generates quasicrystal structures by projection from a crystal
structure in a higher dimension. A hyperplane of a slope with irrational coe�cients
is passed through a regular grid of lattice points. All lattice points within a certain
distance of the hyperplane are orthogonally projected onto the hyperplane. Because
each axis of the hyperplane is irrationally sloped with respect to the grid, no pro-
jected points along any axis fall in a repeating pattern. The points projected on
the hyperplane can be used to construct a corresponding tiling of the plane that is
quasicrystalline.

The generalized dual method constructs quasicrystal structures dual to inter-
secting grids.[dB81] A grid is formed by a set of parallel curves. A N-grid is a set
of N grids such that every pair of curves from di�erent grids intersect at exactly
one point. An N-grid can be mapped by a dual transformation onto a tiling of
the plane such that every intersection of grid lines becomes a tile and every space
between grid lines becomes a vertex of the tiling. This approach can also be used
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to construct tilings of space or higher dimensions by taking the dual of intersecting
surfaces. Durand[Dur94] developed software that generates graphic images of non-
periodic tilings by projection from �ve-dimensional space using an approach given
in deBruijn[dB81].

The generalized dual method can produce a wider class of tilings than the pro-
jection method and the Penrose approach produces a narrower class of tilings than
either of the other approaches.[SS86] In general, only the Penrose approach pro-
duces aperiodic prototile shapes|shapes that cannot tile the plane periodically.
Typically, complex matching rules are required to force the prototiles generated by
the other methods to tile the plane aperiodically. In these circumstances, determin-
ing whether the placement of a tile is legal requires the examination of a larger area
around the tile than its immediate neighbors. Complex matching rules cannot be
used to deform the edges of the prototiles to equivalent shapes that do not require
the use of matching rules. The projection and generalized dual methods only pro-
duce tilings by rhombuses while the in
ation method can be used to produce tilings
with a variety of shapes.

Shechtman, Blech, Gratias, and Cahn in 1964 melted an alloy of aluminum and
manganese and then rapidly cooled it. Electron di�raction of the substance that
solidi�ed revealed that it had icosahedral symmetry. Previously, pure solids were
classi�ed as either crystals or glasses. Glasses are formed as random packings of
atoms that do not produce a structured di�raction pattern. The atoms in a crystal
are arranged in parallel planes that re
ect incoming particles in such a way that
re
ected waves add to produce a di�raction pattern. However, a central tenet of
crystallography is that only twofold, threefold, fourfold, and sixfold axes of rota-
tional symmetry are possible for a crystal structure while the aluminum alloy had
�vefold rotational symmetry. The glass, random-tiling, and Penrose models were
advanced to explain these results.[Ste86] Later investigators discovered other alloys
and improved techniques for growing crystal-like structures with di�raction patterns
that indicate translational order, but with symmetry types forbidden for crystals.
These substances are called quasicrystals . Current evidence suggests that these
substances are formed from an arrangement of atoms that corresponds to aperi-
odic tilings. The precise arrangement of atoms in these structures and the physical
process by which they are formed is as yet unknown.

1.2 Recommended Reading

Stephens and Goldman[SG91], and Steinhardt[Ste86] provide an overview of physics
results relating to quasicrystals. A pair of articles by Steinhardt with Levine and
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Socolar[LS86][SS86] discuss in detail methods for generating one, two, and three-
dimensional quasicrystals and predicting their di�raction patterns. Penrose[Pen84]
provides an account of the insight and techniques that lead to the discovery of his
�rst aperiodic set consisting of six prototiles. Gardner's article[Gar77] describes the
discovery and properties of the Penrose kites and darts. Chapter 10 of Gr�unbaum
and Shephards' book[GS87] is required reading for anyone interested in aperiodic
tilings. Chapter 10 of this book provides an extensive compilation of the properties
of various aperiodic tilings and the rest of this book surveys the entire tiling �eld.
Lunnon and Pleasants[LP87] generalize Penrose's method for constructing aperiodic
tiles with in
ation and matching rules and construct higher-dimensional aperiodic
tilings from one-dimensional quasiperiodic sequences. They also discuss in depth
generalized notions of properties we are very interested in: irreducible protosets,
local isomorphism, and vertex con�gurations.

A great variety of aperiodic tilings are described in the literature. Gr�unbaum
and Shephard introduce the Wang and Robinson tiles based on square shapes, three
sets of Penrose tiles and the equivalent Robinson triangles, and Ammann's tiles
whose sides can be continuously varied in length according to certain formulas.
The in
ation properties of these tilings are discussed and all the sets of prototiles
can have their edges deformed so as to force an aperiodic tiling without matching
rules. Baake, Ben-Abraham, Klitzing, Kramer, and Schlottman[BBAK+94] cata-
log all possible arrangements of tiles around a vertex for several tilings with �ve-
fold, tenfold, twelvefold, and three-dimensional icosahedral symmetry. Steinhardt
and Socolar[SS86] construct a three-dimensional analog of the Penrose tiles and
Danzer[Dan89] gives a related set of four tetrahedra made from planes related to a
regular icosahedron. We are most interested in the Robinson triangles and Danzer's
tetrahedra since they use a small number of shapes and their in
ations are simple
and neat.



Chapter 2

Example: Penrose and the

Triangles Inside

A tiling is a covering and a packing; tiles are placed to �ll the plane without overlap-
ping. Figure 2.1 is a tiling constructed from three shapes: a regular triangle, square,
and octagon. We study tilings formed from a �nite (usually small) number of shapes.
A periodic tiling is identical to a translation of itself. A periodic tiling translated a
certain distance in some direction is indistinguishable from the original. Two such
translations are indicated by arrows in Figure 2.1 and all combinations of these
work as well. Consequently, the tiling can be formed by the repeated placement of
a single rhombus as shown in Figure 2.2.

Two important sets of shapes are Penrose's kites and darts, and thin and thick
rhombuses shown in Figure 2.3. Any protoset containing a rhombus admits periodic
tilings, but Penrose marked his tiles with decorations known as matching rules that
constrain tile placements. The arrows and dots on the corners and edges of a Penrose
tile must be identical to those of its neighbor and Figure 2.4 is a tiling with kites
and darts placed in this manner. The matching rules are used as a shorthand for
tiles with more complicated shapes. Deformed versions of Penrose's kite and dart
can be formed that can only be placed according to the matching rules. Since no
periodic tilings can be formed by Penrose's tiles in accordance with the matching
rules, it is said that the kites and darts, and rhombuses are aperiodic. In Figure 2.4
only a �nite section of the tiling is visible, so it is impossible to register that it is
not periodic, but clearly there is an irregularity here, as compared with Figure 2.1.
A proof of the aperiodicity of Robinson's triangles is found in Section 2.2.2.

5



CHAPTER 2. EXAMPLE: PENROSE AND THE TRIANGLES INSIDE 6

Figure 2.1: A periodic tiling. The upper-left corner shows the 3 shapes that are
placed without overlapping and �ll the plane. The tiling can be translated according
to either of the two arrows without e�ect. Tilings with such translations are periodic.
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Figure 2.2: A periodic tiling as a grid of period parallelograms. Any combination
of the two translations of Figure 2.1 maps the tiling to itself, implying the grid
shown above. Any periodic tiling can be formed by regular placement of a period
parallelogram.
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Kite
Dart

Thin

Rhomb

Thick

Rhomb

Figure 2.3: Shapes of Penrose's kites, darts, and rhombuses. Penrose discovered
two related aperiodic sets of shapes: the kites and darts (above) and the rhombuses
(below). Arrows and the black and white dots must match for adjacent tiles.
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Figure 2.4: An aperiodic tiling by Penrose's kites and darts. Kites and darts are
placed according to the matching rules to �ll the plane. This tiling is highly struc-
tured, but not in a simple, regular way. Since there are symmetries by translation,
this tiling is aperiodic.
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2.1 Meet Robinson's Triangles

Robinson's triangles are formed by cutting Penrose's tiles in half to form the two
di�erent triangular shapes seen in Figure 2.5. The two isosceles triangles are used
(with di�erent relative sizes) to form two sets: the A-tiles and B-tiles. Again, they
are decorated with dots and arrows, and more complicated undecorated tiles can
be formed that match equivalently, and this is shown for the A-tiles in Figure 2.6.
Each tile may also be turned over and placed. Another way of thinking of this is
that there is a right-handed and left-handed version of each tile, making four A-tiles
and four B-tiles. Left-handed tiles are shown in grey and labeled with primes (')
in Figure 2.5. The matching rules force tiles to pair so that large A-tiles are kites,
small A-tiles form darts, large B-tiles form thick rhombs, and small B-tiles form thin
rhombs. We assign a symbol to each type of tile by using the letter A/a for A-tiles,
B/b for B-tiles, capitalizing based on size, and adding a prime (') for left-handed
tiles. Thus the symbol b0 indicates a small B-tile. Many properties of Robinson's

triangles are related to � = 1+
p
5

2 = 1:618034 : : :, the golden ratio.
The A-tiles have dimensions and angles as seen in Figure 2.7. A has a base of

length 1 and legs of length � and the smaller tile has a base of length � and legs of
length 1. The area of the large tile is � times greater.

Figure Figure 2.8 gives the dimensions and angles of the B-tiles. A and b are
congruent. B and a are similar triangles where the sides of B are � times as long
and its area is �2 times greater.

2.2 In
ation

In any A-tiling or B-tiling, some of the tiles can be joined in pairs, resulting in a
larger tiling of the other type. Each joined pair forms a tile equivalent to a large
tile of the new type. Some large tiles will not be joined with small tiles and these
tiles are already equivalent to small tiles of the new type. The process of attaching
together tiles to form a tiling by a set of larger shapes is known as composition.

A-Tiles Build Larger B-Tiles It has already been shown above that A and b
are identical. The A and a can be grouped together to form a tile equivalent to
the B. To accomplish this, A is turned over and its base is attached to a. The tile
formed by grouping A and a has an extra arrow and a white dot at its base that
can be removed without e�ect since this edge will only match with itself in either
case.
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B B’

b b’

A A’
a a’

Figure 2.5: Cutting Penrose's tiles in half forms Robinson's tiles. Cutting apart
kites and darts forms A-tiles (A and a). Cutting apart rhombuses forms B-tiles (B
and b). There is a right-hand and left-hand version of each tile and left-handed tiles
are indicated with a prime ('). In any Penrose tiling, any tile can be replaced with
a right-handed and left-handed Robinson tile of the appropriate type. Due to the
matching decorations, in any Robinson tiling the tiles must pair in couples whose
union is a Penrose tile.
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Figure 2.6: Deforming Robinson's tiles eliminates the need for matching rules. The
matching decorations for the A-tiles (above) and equivalent undecorated tiles (be-
low) tile in exactly the same way.

B-Tiles Build Larger A-Tiles B-tiles can be attached together to form A-tiles
scaled by � . The B and a (scaled) are identical except that the color of their dots is
reversed. Joining the B and b along their sides with two black dots results in a tile
equivalent to the A (scaled). The color of its dots must also be reversed. Reversing
the dots of the A and a is allowable since this has no overall e�ect on the matching
properties of the A-tiles formed. The side with an extra dot is equivalent to a side
with an arrow instead, since this side is required to match only with itself and either
decoration forces it to match in the same orientation.

These compositions can also be reversed. If every large tile of an A-tiling or
B-tiling is divided into two pieces and alterations are made to the dots and arrows
as described above then a tiling of the other type results. Repeating this operation
will form tilings by smaller and smaller shapes that alternate between A-tiles and
B-tiles. If the tiling T is divided to form T 0 with smaller pieces of the opposite



CHAPTER 2. EXAMPLE: PENROSE AND THE TRIANGLES INSIDE 13

A

72.0°

36.0°

1

ττ

a
108.0°

36.0°

11

τ

Figure 2.7: Dimensions and angles of the A-tiles.

B

36.0°

108.0°τ τ

τ+1

b

72.0°

36.0°

1

τ τ

Figure 2.8: Dimensions and angles of the B-tiles.
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type then we say T 0 is an in
ation of T and T is a de
ation of T 0.1 In
ation
and de
ation can be iterated to form tilings by arbitrarily large or small A-tiles or
B-tiles. The area of the large or small tiles at successive levels of in
ation is smaller
by a factor of � .

De
ation can be used to prove that Robinson's triangles tile the plane. Begin
by placing single A tile. In
ate the tile, decomposing it into two smaller tiles of the
opposite type. Continue in
ating the tile, forming increasing numbers of smaller and
smaller tiles. After n in
ations, a patch of tiles results with tiles that are 1

�n
times as

large as the originals. If this patch is scaled by �n, a patch of tiles results with shapes
of the original size and an area �n times as great as the seed tile. Increasingly large
values of n can be used to produce increasingly large patches of B-tiles or A-tiles
for odd or even n. Since this method can be used to form arbitrarily large patches
made up of arbitrarily many original unit tiles, it follows that the plane can be tiled
with either A or B-tiles.2

2.2.1 Relative Frequency of Tiles

The B tile is formed from an A and an a while the b is formed from a single A. If
even larger A-tiles are then formed from these B-tiles then the large A will contain
three original unit A-tiles and the large a will contain two. At each successive level
of in
ation, the new large tile will contain a number of unit tiles equal to the sum
of the unit tiles contained in both the large and the small tiles from the previous
level of in
ation. The new small tile will contain a number of unit tiles equal to the
number of unit tiles in the large tile from the previous level of in
ation. If Ln and
Sn are the number of unit tiles contained in single large and small tiles at n levels
of in
ation then:

Sn = Ln�1
Ln = Ln�1 + Sn�1

Sn�1 = Ln�2
Ln = Ln�1 + Ln�2

Since at the �rst level of in
ation both tiles are unit tiles, L1 = S1 = 1. Ln is the n-
th Fibbonacci number (fibn) where fib1 = 1, fib2 = 2, fib3 = 3, fib4 = 5, fib5 = 8,

1In
ation and de
ation are properly de�ned in combination with a scaling to produce tiles of
the original size. We neglect this detail to simplify later discussion and because illustrations of
in
ation and de
ation are easier to visualize when smaller tiles lie within each other.

2This is proven by use of the Extension Theorem as stated in Grunbaum.[GS87] \Let L be any
�nite set of prototiles, each of which is a closed topological disk. If L tiles over arbitrarily large
circular disks D, then L admits a tiling of the plane."
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and fibn = fibn�1 + fibn�2. Sn is fibn�1. In a complete tiling of the plane, the
ratio of large to small tiles is limn!1 fibn

fibn�1
. This ratio is equal to � .[GKP94]

2.2.2 Unique In
ation

Above, we have de�ned in
ation and de
ation as opposites. If this is to make sense,
we need to show that there is only one way to in
ate or de
ate any particular tiling.
We call this property unique in
ation. In
ation is de�ned above as a speci�c way
of replacing each tile with a patch of smaller tiles of the opposite type. We need to
show that all tilings can also be composed to form larger tilings of the opposite type
by attaching pieces in this way, and that only one such composition is possible.

The leg of an a that has no arrow can only match the base of an A and thus
in an A-tiling, every a must border an A in this way.3 This connection is the only
way in which a large B-shaped tile can be formed by grouping an a with adjacent
tiles. The tiles of an A-tiling must be composed to form a B-tiling by connecting
every a to an A in this way. Each pair becomes a B and the remaining A tiles
become b tiles. The new B-tiles will all match up properly because the A-tiles they
are formed from matched. Given an A-tiling, there is exactly one way to connect
tiles in order to form a B-tiling.

Similarly, there is only one way to form an A-tiling from a B-tiling. The side of
a b with an arrow must border a B so that these tiles compose an A and this is the
only way that an A can be formed.4 Connecting each b to the appropriate B forms
the A tiles of the next level of in
ation while the leftover B tiles become a tiles.

Now we can prove that Robinson's tiles are aperiodic. A tiling is periodic if some
nontrivial translation exists that maps the tiling to itself. A set of tiles is aperiodic
if no periodic tiling can be constructed from the tiles.

Assume that there exists a periodic tiling T of A-tiles or B-tiles. Then there is a
translation T of distance d that maps T onto itself. De
ate the tiling by a su�cient
number of levels, forming the tiling T � so that the shortest side of any tile in T �
is longer than d. Now pick a point v1 at a corner of some tile of T �. Translate v1,
obtaining v2 = T (v1). This point does not lie on a vertex of the in
ated tiling. Since
the tiling is periodic, the entire unin
ated tiling surrounding v1 is identical to that
surrounding v2. In
ating T � eventually forms T and the translation of T �, T (T �)

3If this edge were to match with another a a 
aw in the tiling would arise because the other leg
can only match with an a and these three tiles leave a 36 degree wedge that cannot be �lled.

4Every b tile is adjacent to another at its base, forming a rhombus. If a b was adjacent to
another b along the side with an arrow then two such rhombs would be adjacent in such a way
that a wedge with three black dots would remain. The arrows on the wedge point outward and no
tiles can �ll this space.
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also in
ates to T . Thus, another di�erent in
ation of the tiling can be constructed
with the same structure as the in
ated tiling surrounding point v1 placed instead
around point v2. However, this means that there are two possible de
ations of T
and this contradicts unique in
ation. Therefore, no such periodic tiling could exist
and A-tiles and B-tiles are aperiodic.

Another interesting property of Robinson's triangles is local isomorphism. Any
�nite patch of tiles in an A-tiling is congruent to in�nitely many locations in every
A-tiling. This property also holds for B-tiles. Local isomorphism is related to the
concept of vertex con�gurations. A vertex con�guration is a patch of all the tiles
that meet around a single corner. If a single tile is in
ated a su�cient number of
times then it will contain all possible vertex con�gurations. In Theorem 3 we show
that this means that all tilings are locally isomorphic.

2.3 Index Sequences

An index sequence is used to classify a tiling as the limit of an in�nite sequence
of in
ations. Our exposition follows very closely that of Gr�unbaum and Shephard
[GS87] and all results in this section are stated there as well. Lunnon [LP87] applies
index sequences to a more general class of tilings.

In Appendix A, Figure A.1{Figure A.10 show a series of de
ations of a tiling.
One of the tiles in the �rst panel is specially marked and this mark is place at the
same position in each panel of the series. The index sequence of the marked tile is
the type of tile (large or small) containing it at each level of in
ation. We write 0
for large and 1 for small and alternating digits represent A-tiles and B-tiles. Thus,
0001010101. . . is the address of the marked tile in the �rst tiling.

No index sequence contains two consecutive 1's because small tiles are always
found within large tiles when a tiling is de
ated. Since there is never more than
one way that a tile of a particular type can be contained within a tile of another
type, di�erent tiles have the same address only if they are located within an in�nite
series of di�erent, nested, increasingly large tiles of the same types. Informally, the
limit of such a series of tiles is an in�nitely large tile composed from unit tiles the
size of the indexed tile. More than one in�nitely large tile can occur in a tiling if
the nested tiles grow as a half-plane or fan from a point as shown in Figure 2.9.
A series of tiles that grows this in this way can only be joined to tile the plane if
tiles of the same type and opposite handedness are adjacent. These con�gurations
result in tilings with a line of re
ection or �vefold rotational symmetry, while if one
in�nite tile �lls the plane the resulting tiling has no symmetries. We work out the
circumstances in which these cases apply below.
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HALF-PLANE FAN

Figure 2.9: In�nite subregions of the plane generated by de
ation. The shaded
triangle lies inside a larger, similar tile of the same orientation that contains it in
a de
ated tiling. When the grey tile lies on one edge of the de
ated tile (left),
de
ations �ll a half-plane. When the grey tile lies on two edges of the de
ated tile
(right), de
ations �ll a fan bounded by two rays.

In addition to specifying the location of 1, 2, or 5 tiles (depending on the sym-
metry group) in a tiling, an index sequence completely determines the tiling itself.
Any two tiles in the same tiling must be contained within the same tile or the same
tile in di�erent symmetric regions after a su�cient number of in
ations.5 Thus, two
index sequences di�er in a �nite number of bits if and only if they identify tiles in the
same tiling. This allows a simple proof that there are uncountably many di�erent
tilings.6 We will see later that the symmetry type of a tiling can be identi�ed from
its index sequence.

2.4 Addresses

We are interested in representing �nite regions of tiles called patches . We could do
this by growing the dual graph of a patch directly, as described in Section 5.2, but
this graph could easily become prohibitively large. There is only one way that one
type of tile can be contained in any other, so an index sequence can be viewed as a
series of instructions for forming increasingly large tiles containing the indexed tile.
The �rst digit of an index sequence speci�es the type of a single tile and each later
digit nests the patch described by the previous digits within a larger patch.

We examine index sequences of �nite length that we call addresses . An n-digit

5We discuss symmetry in Section 2.7.
6Fleshing out this proof requires careful examination of what it means for tilings to be di�erent

and how this actually occurs for tilings as the limit of index sequences. Since index sequences are
in�nite sequences of 0 and 1 (without two consecutive 1's), they correspond to the reals.
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address represents the location of a tile within a patch containing fibn or fibn�1
tiles if its last digit is 0 or 1 respectively. Therefore, the length of an address is
logarithmic base � in the number of tiles. Since no addresses contain consecutive
1's, valuing their digits according to the Fibonacci numbers uniquely maps addresses
of length n to integers between 0 and fibn+1 � 1. We will often write addresses as
strings of tile types rather than 0's and 1's and by convention we use A or a as the
�rst digit, representing only A-tilings. Thus 01001001 is written AbABaBAb.

Addresses carry information about the patch a tile is within as well as its location.
Say A is the address of a tile in the patch P . Removing the �rst digit of A results in
the address of a tile in the de
ation of P that contains A. Similarly adding a digit
to the front of an address results in the address of a tile in the in
ation of P that is
contained by A. The choice to add a 1 or 0 places the resulting address inside the
large or small tile in
ated from the large tile addressed by A. If A addresses a small
tile, there is no choice and both addressed tiles are congruent.

The patch P is congruent to some number of in
ations, n, of one of the A-tiles.
Adding a bit to the end of P represents a patch congruent to n + 1 in
ations of
one of the A-tiles. The new tile is located within a patch congruent to P that lies
inside this in
ation. If the last digit of A is 0 then adding a 1 to the end of A
represents a small tile at this next level of in
ation, which is identical to P . If a 0
is added then the patch represented by A is located within a large tile at the next
level of in
ation. This large tile is formed from a large and small tile from the level
of in
ation of A, and P is congruent to one of these. We call adding a bit to the
end of an address extension. Small tiles can only be extended in one way, but large
tiles can be extended in two di�erent ways. Following a large tile by a small one
does not make the patch larger, but the next extension after this will. Extension
produces a patch at the next level of in
ation that contains the current patch and
whenever a 0 is added this results in a larger patch. A 0 is added with at least every
other extension. If an address ends in 0 then there are two di�erent ways that it
can be extended and choosing one of them determines the structure of an in
ated
patch surrounding the current patch. Extension is used to simulate an in�nite tiling
by extending �nite patches whenever necessary.

2.5 Adjacency

In order to tour tilings using addresses, we need a technique for �nding which
addresses are adjacent. The sides of each tile are labeled left (l), right (r), and middle
(m). We call the base of a triangle the middle side and if the base is downward then
the left and right legs are on the left and right. An opposite scheme is used if the
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tile was turned over before being placed. In other words, the left and right sides
of a left-handed tile are the mirror-image of a right-handed tile. We want to know
which addresses are adjacent and the sides by which they are adjacent.

If a move leaves a tile t with address A = (a1; a2; : : : ; an) by side s, we want
to determine the address A0 of the tile t0 that the move enters. We do this by
examining the consequences of the move for successive digits of A. Figure 2.10
shows that a move may result in a series of crossings of the sides of tiles at several
levels of de
ation. A move that passes across an edge of the n-de
ated tiling may
result in a change to the value of digit n+1 of the address. Whenever an n-de
ated
tile is crossed, i-de
ated tiles are also crossed for i < n. We �rst examine a1 and
a2 and assume that the �rst digit of the address represents a type of A-tile. a1
gives the type of t (A or a) and a2 gives the type of the larger, once-de
ated tile
that contains it (B or b). There is only one way that any particular A-tile can be
contained in any particular B-tile and we can use this relationship to determine the
e�ect on a2 of the move leaving digit a1 by its side s. The move can be of two types.
An internal move leaves a1 and crosses to another tile within a2. An external move
leaves a1 and also leaves a2 by one of its sides e2. If we encounter an external move
then we repeat the process. The once-de
ated tile represented by a2 lies inside the
tile represented by a3 in some particular way and leaving a2 by side e2 is either an
internal move or is an external move that leaves a3 by some side s3. This process
is continued until an internal move is reached. Ignoring symmetric tilings for now,
both the origin and destination tiles (t and t0) of the move must be contained inside
the same tile at some level of in
ation and the two addresses are the same from this
digit on.7

Figure 2.11 can be used to determine the result of any external or internal move.
A table of the ways in which any tile a can be related to the de
ated tile a� that
contains it appears in Figure 2.12. An entry of the form as! a�s� is an external
rule. Leaving a by s leaves a� by s�. An internal rule has the form as ! a0s0 � a�

and indicates that leaving a by s remains within a� and crosses into the tile a0,
entering by its side s0.

Using the table, we can follow a series of external moves. We will discover that
leaving the tile addressed by A along side s implies a series of external moves, and
eventually the digits al and al+1 will �t an internal move of the form alsl ! a0ls

0
l �

al+1. This means that leaving A by s crosses the side sl of the (l � 1)-de
ated tile
represented by al and enters the (l � 1)-de
ated tile represented by a0l through its
side s0l. If A

0 = (a01; a02; : : : ; a0n) is the destination address of the move then ai = a0i
7Two adjacent tiles across a line of symmetry are in di�erent tiles at every level of in
ation and

this process breaks down.
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ABaBaBABA -> ABaBaBAbA

Figure 2.10: A move between two tiles that results in a series of crossings at lower
levels of in
ation. The move exits tile ABaBaBABAand enters ABaBaBAbA.
This aerial view raises the higher levels of in
ation containing each tile by slanting
them away from each other. Since the adjacent tiles are in di�erent sections of the
A tile containing the entire patch, this crossing requires traveling down and up a
deep valley.
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Figure 2.11: Relation of a tile's side to the side of the in
ation patch containing it.
Left (l), middle (m), and right (r) sides of the tiles are labeled. Each of the four
patches shown is the way that the type of tile labeled inside the square decomposes
in order to form the next level of in
ation.
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a m ! B l
a l ! A m � B
a r ! B m
A m ! b m
A l ! b l
A r ! b r
A m ! a l � B
A l ! B m
A r ! B r
b m ! A r
b l ! A m
b r ! B r � A

B m ! a m
B l ! a l
B r ! a r
B m ! A l
B l ! A r
B r ! b r � A

Figure 2.12: External and internal rules for Robinson's Triangles. An external
rule as ! a�s� indicates that leaving a by s leaves a� by s�. An internal rule
as! a0s0 � a� indicates that leaving a by s remains within a� and crosses into the
tile a0, entering by its side s0. Note that Ar and Bm each appear on the right-hand
side of two external rules.
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for i > l.
Now we work backwards, �lling in the digits a0i for 1 � i < l. Finding a rule that

matches a0is0i ! a0i+1s0i+1 identi�es the new value of digit i of A0. In this manner, we
can �ll in the remaining digits of A0 from last to �rst. However, there is a special
case to consider. All types of tiles and sides appear as the right-hand side of some
external rule, but two of these (Ar and Bm) appear on the right-hand side of more
than one rule and we need to show how to choose which rule to apply. Figure 2.13
shows the alignment of tiles for which this is possible. Whenever this situation
occurs the digit (Ar or Bm) represents entry into a large tile along a long side,
and two smaller tiles at the next level of in
ation have edges on that long side. It
happens that according to the matching rules, sides Ar and Bm can only occur
next to their re
ections|the same type tile with opposite handedness. This means
that whenever one of these sides is encountered while working backwards then the
remaining digits of A0 are identical to those of A in the same positions.

A

B

B

a A
B

A

B

b

A

a’ A’

B’

b’

Figure 2.13: Symmetrical matching disambiguates non-unique backwards moves.
The rules bm ! Ar and Bl ! Ar and the rules ar ! Bm and Al ! Bm describe
sides of in
ation patches that contain two smaller tiles. Since these sides only match
with the opposite-handed tiles, bits of the addresses preceding one of these rules are
identical.

If the move crosses outside of the patch represented by A then we must extend
this patch until A does contain the destination. In practice, we do this while fol-
lowing external rules. If we determine that an is left by side en, but A only has n
digits then we extend A by adding another digit and proceed as normal. Then if
we request the adjacency of A, the result, A0 will be a longer address because the
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algorithm used extensions of A to compute A0.
This algorithm can be used to compute the adjacencies of any address and re-

quires time proportional to the length of the resulting address. It can be used to
explore an unlimited expanse of Robinson triangles. Additional bits are added as ex-
ploration proceeds increasingly far from the origin and each additional digit extends
an address to encompass a patch containing � times as many tiles.

2.6 Orientation and Handedness

The above algorithm can be extended to maintain information about the handedness
and rotational orientation of tiles that are visited. A tile can have one of ten di�erent
orientations. We name these orientations with the compass-like directions N, NE,
EN, ES, SE, S, SW, WS, WN, and NW. The orientation of a tile is the direction in
which the wedge of its two legs points.

Every pair of adjacent tiles has di�ering handedness (one of the tiles was turned
over when placed) and the orientation of any tile can be determined from the ori-
entation of one of its neighbors and the sides by which the two tiles are adjacent.
Figure 2.14 illustrates these relationships and Figure 2.15 gives a set of rules for
determining the handedness and orientation of a tile from one of its neighbors and
the sides they share. Thus, if the origin of an exploration is assigned an address,
handedness, and orientation then our data structure can produce the address, hand-
edness, and orientation of the other tiles encountered as exploration proceeds as a
series of moves to adjacent tiles.

Using the address of a tile within an in
ated tile with known orientation and
handedness, we can deduce the orientation of the unit tile relative to the in
ated
tile. Figure 2.11 can be used to deduce the orientation of tiles formed by in
ation
from others. These rules are given in Figure 2.16 and they relate the orientation of
tiles at di�erent levels of in
ation.

2.7 Symmetry

So far, we have left an important detail unaddressed. If certain index sequences
are used to extend addresses then leaving some addresses by certain sides results
in in�nite series of external moves. The situation in which this occurs corresponds
to the crossing of a line of symmetry in the tiling. If two tiles are adjacent across
a line of symmetry then no single de
ated tile will contain both of them. This
problem also blights our approach for representing a generalized class of tilings and
is discussed at length in Section 6.1.
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Figure 2.14: Potential neighbors of an A-tile. A and a are shown neighboring other
tiles in every possible way. Note that the only options are Al and am and that
adjacent tiles have opposite handedness.
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A r N ! A0 r NW
A l N ! A0 l NE
A l N ! a0 m WN
A m N ! a0 l NW
a l N ! A0 m NW
a m N ! A0 l WN
a m N ! a0 m S
a r N ! a0 r WS

Figure 2.15: Orientation rules for adjacent tiles. The table contains a rule of the
form aso! a0s0o0 if a tile of type a and orientation o can neighbor a tile of type a0

and orientation o0 so that they are adjacent along sides s and s0. Primes (') after the
types of tiles indicate that they left-handed. Rules are only given for right-handed
tiles with the orientation N. Any other orientation or handedness can be handled
by reversing the handedness of both the tiles of a rule or rotating them.

B ES ! A N
b WS ! A N
B N ! a N
A0 ES ! B N
a SE ! B N
A N ! b N

Figure 2.16: Orientation rules for in
ations of tiles. The table contains a rule of the
form ao ! a0o0 if a tile of type a and orientation o is a tile from the in
ation of a
tile of type a0 and orientation o0. Primes indicate left-handed tiles. The rules are
only given for large right-handed tiles with the orientation N but are analogous to
rules with di�erent handedness and other orientations.
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To examine sequences of external rules, we form a directed graph called the
edge extension roadmap. Nodes of the graph are pairs of tile types and sides. For
each external rule as ! a�s�, an edge is placed from node as to node a�s�, form-
ing the structure shown in Figure 2.17. All in�nite sequences of external moves
correspond to a path through the edge extension roadmap and all paths through
the roadmap generate (using the tile types of each node) an index sequence for a
tiling with at least one line of symmetry. All in�nite paths through the roadmap
pass through the node Bm in�nitely many times. Neglecting the �rst few dig-
its before Bm is reached, all paths can be formed by repeated concatenation of
one of the three cycles from Bm, as shown in Figure 2.18. These three cycles ex-
tend patches as shown in Figure 2.19. A legal address (no consecutive 1's) is in
the regular language (A(bA)�BjaB)�. An address that contains a line of sym-
metry is formed by a legal pre�x followed by one of the three loops and thus
has the form (A(bA)�BjaB)�(Aja)(BAjBaBABajBAbAbABa)1. Three special
tilings|the cartwheel, the sun, and the star|have addresses of (AB)1, (ABaB)1,
and (aBAB)1. We can see that the cartwheel is a repetition of the �rst cycle, and
the sun and star alternate between the �rst and second cycles. The index sequence
of a mirror-symmetric tiling is made up of loops that extend patches along a half-
plane and �ve-fold rotationally-symmetric index sequences have patterns that extend
patches in in�nite fans as seen in Figure 2.9.

Figure 2.20 shows a B tile in
ated 9 times and two B tiles with the same ori-
entation and handedness as the resulting patch appear at two of its corners. No
such tiles appear at the previous levels of in
ation. The addresses of the two tiles
are the repeating digits of the sun and star index sequences. Whenever B occurs in
an address but is not followed by the address of one of these tiles then the address
corresponds to some position other than the corners. If the sequence disagrees with
the three roadmap cycles in in�nitely many places this corresponds to selection of a
tile within B and the tiling grows to �ll the plane and contains no lines of symmetry.
Figure 2.19 shows each of the three cycles fromBb in the edge in
ation roadmap by
�nding tiles corresponding to the addresses of within in
ations of a B tile. If after
some pre�x, the index sequence is formed from the three roadmap cycles then this
corresponds to selection of tiles along the middle edge of B and the tiling grows as
a half plane, forming a line of mirror symmetry. The sun and star are formed from
di�erent phases of the alternating pattern of cycle 1 and cycle 2 and are the only
tilings with �ve-fold symmetry. The sun and star have 10 lines of mirror symmetry
as well.

We can incorporate one of these index sequences into our addressing scheme as
follows. Adjacent tiles across lines of symmetry have the same address. Since any
address identi�es a tile in each region of symmetry, we store with the address a
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AmAl

ArBm

Bl Br

am

al

ar

bm

bl

br

B

A

B A

Figure 2.17: Roadmap for Robinson's tiles. Nodes without circles are the sides of
tiles and transitions between them are external rules. Any tiling that contains a
line of symmetry has an index sequence that is an in�nite tour within this graph.
Circled nodes and transitions to them are internal rules that exit such a pattern.
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Bm

Al

am,Bl,Ar,Br,ar Al,bl,Am,bm,Ar,Br,ar

Figure 2.18: Symmetry cycles. Only three cycles are possible from the state Bm in
Figure 2.17.

BaBABaB
2

BAbAbABaB

3 1

BAB

Figure 2.19: Location of each symmetry cycle within an in
ated patch. Each cycle
in Figure 2.18 descends into one of the grey sections inside a B tile. In
ations that
follow these cycles will grow a half-plane along the Bm side or a fan along one of
its corners.



CHAPTER 2. EXAMPLE: PENROSE AND THE TRIANGLES INSIDE 30

BABaBABaB BaBABaBAB
1 2 12

Figure 2.20: Address patterns with �ve-fold symmetry. When a B tile is in
ated
9 times, two B tiles with the same orientation and handedness as the entire patch
appear at the two shaded corners. These addresses are formed by alternations of
the �rst 2 symmetry cycles. Since any other addresses following a B tile in this way
correspond to tiles that are not at these corners, alternation of these two cycles is
the only way to form tilings with �ve-fold rotational symmetry.

special digit that is the location of the tile in one particular region of the tiling.
This is a number between one and �ve for �ve-fold rotationally symmetric tilings
such as the sun and star and is binary for mirror-symmetric tilings such as the
cartwheel. It is not possible to tell when a move crosses a line of symmetry unless
a pattern used to extend addresses is known. If this pattern is known, moves that
cross lines of symmetry can be identi�ed in the roadmap. If the pattern is a repeated
cycle, then moves that cross a line of symmetry can be identi�ed with the parser
shown in Figure 2.21. This analysis can be performed in advance of actual use of
particular addresses. When the adjacency algorithm encounters one of these moves,
it immediately terminates and returns the same address it was given. When this
occurs, the special digit is changed to indicate a new region of the tiling. In �ve-
fold symmetric tilings, we examine the pattern of digits in the in�nite address and
determine the handedness of the B tile for the Bm that is reached at the end of
each occurrence of the second roadmap cycle. As can be seen in Figure 2.20, if this
tile is right-handed then the move is clockwise around the region of symmetry.
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BA

BaBA

bAbABa

BaBABa

find BA

S,25,33

S,23

S

S

S*

 1      2        3

BA | BaBABa | BAbAbABa

12   123456   12345678

Figure 2.21: A parser to identify the beginning of loops of symmetry. Positions
within the three loops are represented with pairs of numbers. The �rst number is
the loop (1{3) and the second is the position of one of the digits of the loop. States
indicate the set of such locations at which the string could possibly be located. State
S indicates a position after �nishing one of the loops and before starting a new one.
A state with a single S is the goal. The state S0 indicates that the previous state was
the start and we can move one step back to �nd that position. Input to the parser
is an in�nite string of digits from an index sequence that is formed by a repeated
cycle. We begin at the top by �nding B followed by A. We feed the parser digits
until a �nal (circled) state is reached or until digits do not match a transition. If no
transition is found for some digits then the tiling formed is not symmetric.



Chapter 3

Three Dimensions:

Danzer's ABCK Tetrahedra

The concept of a tiling can be extended to three dimensions. Tiles are volumes
that match together face-to-face rather than edge-to-edge. A tiling is a placement
of these volumes that �lls space with no overlapping tiles. Now we adapt our data
structure to a set of three-dimensional tiles discovered by Danzer[Dan89]. We must
account for two new complexities. An addresses involves more than two di�erent
shapes, and second, analyzing backwards moves is not as neat as with Robinson's
triangles.

Danzer says that he discovered these tiles by examining the mirror planes of
a �xed regular icosahedron. Tiles can have four di�erent shapes, all of which are
tetrahedra with edge-lengths and dihedral angles given by Figure 3.1.

In Figure 3.2, we provide fold-up cutouts for each tile. The tiles are named A,
B, C, and, of course, K. Mirror images are also allowed, and we denote these as A',
B', C', and, K'. The tiles have one matching restriction. Any face participating in
a dihedral angle of 90 degrees must match with its mirror image. The A, B, and C
tiles each have one such edge, while the K tile has two. Thus valid tilings contain
A, B, and C tiles in groups of four, while K tiles form octahedra.

3.1 In
ation

Danzer's tiles can be assembled to form a larger version of each tetrahedron. This
occurs directly, rather than cycling through di�erent protosets as with the A and
B-tiles. Assembling groups of tiles in this way yields A, B, C, and K tiles scaled
by � and with the same matching rules. Figure 3.3 suggests the structure of these

32
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1{2 2{3 3{1 2{4 1{4 3{4

A 36
�; a 60

�; � b 72
�; �a 108

�; a 90
�; 1 60

�; b

B 36
�; a 36

�; �a 60
�; � b 120

�; b 108
�; a

�
90

�; 1

C 36
�; a

�
60

�; � b 90
�; � 120

�; b 72
�; a 36

�; a

K 36
�; a 60

�; b 72
�; a

�
90

�; �

2
60

�; 1

2
60

�; 1

2�

Figure 3.1: Edge lengths and dihedral angles for Danzer's tetrahedra. Vertices are
numbered from 1 to 4 and an edge is given as the pair of vertices at its endpoints.
Edges are listed along the top of the table and the four types of tetrahedron are
listed along the left side. Entries in the table indicate the dihedral angle and length
of one of the edges of one of the tetrahedron types. Three constants are used for the

edge lengths: � is the golden ratio, a is

p
(10+2

p
5)

4 , and b is
p
3
2 . This table is from

Danzer[Dan89] with some notations changed and an erroneous angle corrected.

assemblages. We call each group of tiles an in
ation patch and they are shown
in Appendix B, Figure B.1{Figure B.4. In order to in
ate a tiling by Danzer's
tetrahedra, each tile is replaced with the corresponding in
ation patch and the result
is scaled by � , yielding a new tiling of the original size. Seven levels of in
ation of
the K tile are presented in Figure B.5{Figure B.9. It is interesting to note that a
K-tile appears at the corner shown at every level of in
ation of a K-tile.

3.2 Addresses

We form addresses using the in
ation patches. The �rst digit of an address is just
the type of the addressed tile|A, B, C, or K. The second digit is the location of this
tile within one of the in
ation patches. The A tile can only be found inside a larger
C-tile, but all other tiles occur within patches at the next level of in
ation in multiple
ways. We assign unique numbers to tiles of the same type in the same in
ation patch
according to the labels of nodes in Figure 3.3 to ensure that locations are uniquely
speci�ed. The address (K2B) represents a K-tile inside a B-tile, speci�cally the
second K-tile inside the B-tile, or K2 in the in
ation patch for B in Figure 3.3. We
call the patch within which an address locates a tile its extent . Thus the extent
of a two-digit address is one of the in
ation patches. We consider the letters of an
address its digits. Numbers between digits indicate the unique placement of digits
in relationship to succeeding digits.

The extent of a three-digit address is one in
ation of one of the in
ation patches.
The in
ation of an in
ation patch is constructed by scaling the in
ation patch and
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1
2 3

4

A

1
23

4

A'

1

4

2

3

B 1

4

2

3B'

1 2

3

4
C

12

3

4
C'

1
2

3

4

K
1

2
3

4 K'

Figure 3.2: Folding templates for the ABCK tiles. Edges on faces that must match
with the same type of tile with opposite handedness are marked with a slash. Ver-
tices are labeled with their numbers (1{4). Left-handed tiles are built by folding the
tiles backwards or printing a mirror image of this page.
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B1K1
4 3

K
1:(B1,2),(K1,2)
2:(K1,3)
3:(B1,1),(K1,1)
4:(B1,4)

C1 K’1

K2

K1

K’2

B1

B’1

3 3 3 3

3 3 3

4 4

4

2

2

2

2

2

2

B 1:(C1,2),(B1,4)
2:(C1,4),(K2,4)
3:(B'1,4)
4:(B'1,1),(K'2,1),(K2,1),(B1,1),
(K1,1),(K'1,1),(C1,1)

1:(C'1,4),(C1,4),(K1,4)
2:(K1,3),(K'1,3),(C'1,3),(A'1,2)
3:(A'1,4)
4:(K1,1),(k'1,1),(C1,1),(A'1,3)

C A’1 C’1 C1 K’1 K1
1 1 2 2 3 4 2 2

1:(K'2,4),(C'1,4),(C1,4)
2:(B2,1),(K3,1),.(K'3,1),(C1,1)
3:(K'3,2),(K3,2),(B2,2),(B1,4)
4:(C'1,1),(K1,1),(K'1,1),(B'1,1),
(K'2,1),(K2,1),(B1,1)

A

3 3

K’1 B’1K1

B1K2K’2

3 3 3 3

3

4 4

4

2

2

2

2

2

2

C’1

C1 K3K’3 B2
3 4 3 3 4 3

2

2

4

4

Figure 3.3: Structure of in
ation patches for Danzer's tetrahedra. Nodes are the
tiles which make up the in
ation patch for each type of tetrahedron. Labels indicate
the types of these tiles and primes (') indicate that a tile is left-handed. Numbers
were assigned arbitrarily to ensure ensure that each node's name is unique within its
in
ation patch. An edge between two nodes indicates that the two tiles are adjacent
by the faces opposite the numbered vertices labeling the edge. To the right of each
in
ation patch, the individual faces that make up each face of the patch are listed.
If a tile is adjacent to no other tiles then it appears in one of these lists.
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replacing each of these scaled tiles with the in
ation patch of its type. The third
digit of an address identi�es one of the scaled tiles that was replaced. Then the �rst
two digits identify the location of a single tile within the in
ation patch selected by
the third digit.

Each digit of the address works in a similar fashion. The n-th level of in
ation
for a tetrahedron of type p is formed by expanding the unit in
ation patch for p by a
factor of � (n�2) and then replacing each of these expanded tiles with the appropriate
in
ated patch from level n � 1. Note that we let the �rst level of in
ation be a
single tile of type p. The extent of an n-digit address is the n-th in
ation of the
tetrahedron with the type of the n-th digit. Digit number n � 1 selects a tile from
the unit in
ation patch that was scaled to form the level of in
ation corresponding
to the extent of the address and previous digits select a single tile from the patch
that replaces the selected tile.

3.3 Adjacency

External and internal rules can be formed for the Danzer tiles in a manner similar to
the rules for Robinson's tiles. Every edge between nodes of the graph in Figure 3.3
is an internal rule and sides that are part of a face of an in
ation patch are external
rules. There are a total of 100 rules. In Figure 3.4 we show the eight rules from the
in
ation patch of the K-tile.

As for Robinson's triangles, a move from a tile implies a series of external moves
that eventually reach an internal move. Once an internal move is reached, all the
digits after a certain point are known. The trick is to determine the previous digits
of the destination address. For the Robinson triangles, only two sides appear on the
right-hand side of multiple external in
ation rules, but these only occur if the tile
being entered is a mirror-image of the current area. For Danzer's tetrahedra, there
are many multiple rules. However, the only matching that is not an exact mirror
image occurs because face 4 of K sometimes matches with face 3 of B, sometimes
with face 3 of C', and sometimes with itself (K'). This face of the K and B tiles
consists of side 4 of a single B tile while the face of the C tile consists of side 4 of an
A tile. Thus if a move crosses from a K to a C' tile then the previous digit of the
origin address must have been a B and the previous digit of the destination address
must have been an A. The move that occurs thus changes an address of the form
(. . . xB1K. . . ) to an address of the form (. . . yA1C'. . . ). Here x and y represent
the unique location of previous digits within the large tiles of type B and A. (For
example, if the previous digit is a K, it could be located within an A or B tile in
6 or 4 ways.) Ellipses (. . . ) indicate some pre�x and su�x of the two addresses.
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K1 1 ! K 3
K1 2 ! K 1
K1 3 ! K 2
K1 4 ! B1 3 � K
B1 1 ! K 3
B1 2 ! K 1
B1 3 ! K1 4 � K
B1 4 ! K 4

Figure 3.4: External and internal rules from the K tile's in
ation patch. An external
rule of the form Xn s! Y s0 indicates that leaving the tile Xn inside the in
ation
patch for Y by its side s also leaves the in
ation patch by its side s0. An internal
tile of the form Xn s ! Y m s0 � Z indicates that leaving the tile Xn inside the
in
ation patch for Z enters another tile, Y m, within Z by its side s0. Here n and
m are always 1, but for other in
ation patches they are needed to di�erentiate tiles
of the same type.

Now we note that A and B tiles can only match together in such a way that tiles of
the same type but with opposite handedness lie across from each other. Thus, the
previous digits that form the head of each address are identical. The way in which
side 4 of a B tile matches with the fourth side of an A tile can be used to determine
y from x. The same reasoning is also true in reverse for a move from a digit C' to a
digit K, and all rules also hold when the handedness of every digit is reversed. Thus
a move from (. . . yA'1C. . . ) leads to (. . . xB'1K'. . . ) where x can be deduced from
y.

Therefore, a data structure can be formed for Danzer's tiles that works in the
same manner as the Robinson data structure described in the previous chapter. We
have not analyzed the symmetry types that are possible for Danzer's tiles because
this analysis is signi�cantly more complicated. We do, however discuss the problem
of symmetry in general in section Section 6.1 and the techniques presented there
are applicable to Danzer's tiles. In forming a data structure for addressing and
calculating adjacencies in in
ation patches of Danzer's tiles we only rely on particular
features of the tiles in order to determine how to calculate previous digits once an
internal rule is reached. This stage of the adjacency algorithm can be solved more
generally by constructing a table that is used to look up previous digits. The
calculation required to produce such a table is similar in nature to our deduction
above that Bx and Ay precede K1 and C'1 and that y can be deduced from x. In
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Section 5.3, we show how to generate a data structure for exploring tilings generated
by an arbitrary set of in
ation patches and this technique could be used to more
precisely de�ne a data structure for Danzer's tetrahedra.



Chapter 4

Tilings in Space

Thus far, we have been operating with the intuitive notion that a tiling is the
placement of tiles to �ll space with no overlaps, but it is important to de�ne this
concept more precisely before we make more general statements about in
ation and
aperiodicity1. We will restrict our de�nitions to tilings with certain well-behaved
properties and the standard form we will use to specify aperiodic tilings we wish to
explore further restricts the class of allowed tilings even further.

4.1 Protosets and Patches

Our de�nitions will apply to tilings and patches in three dimensions with the un-
derstanding that analogous de�nitions hold in two or more than three dimensions.
Where we say \space", we mean \plane" in two dimensions, a section of a surface
in three dimensions is an arc in two, and volume in three dimensions is area in two.

A prototile is a closed ball of points . Any prototile has a boundary , which is
a subset of the prototile and contains all the other points. A family of prototiles,
or protoset , is a set of prototiles where the prototiles have some minimum and
maximum size. This means that every prototile must contain a sphere with radius
r > 0 and must be contained by a sphere with radius r0. A tile is a set of points
congruent, without re
ection, to some prototile. This congruent prototile is called
the tile's prototile type, or prototype. A patch is a (possibly in�nite) set of tiles for

1Gr�unbaum and Shephard[GS87] stress the importance of carefully de�ning tiling terminology
and describe confusion that has resulted from subtly inconsistent de�nitions in the literature. Our
de�nitions are consistent with those of Gr�unbaum and Shephard with some restrictions and alter-
ations to suit our application. Most notably, we extend their de�nitions to three dimensions and we
place more emphasis on the concept of patches, considering tilings a special kind of in�nite patch.

39
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which the intersection of any two tiles has zero volume and the union of all tiles is a
ball. Here, we have chosen to draw a distinction between the set of shapes that may
be placed to form patches (prototiles), and the actual instantiation of prototiles in
some patch (tiles). We will not normally speak of tiles in any other context than
their appearance in some particular patch. A protoset admits a patch if every tile
of the patch has a prototile type in the protoset. We choose to ignore di�erences
between patches due to rotation or translation. Two patches are considered the

same patch if one can be mapped to the other by rotation and translation.
An edge of a patch is a region of intersection between exactly two tiles2. Edges

have positive area. Regions of intersection between three or more tiles have zero
area. Edges are open sets with zero area, no two of which intersect. Tiles that
share an edge are said to be adjacent . If one or more edges of a tile lie on the
boundary of the patch then that tile is called an exterior tile, and a tile adjacent to
other tiles along each of its edges is interior .

Consider a patch consisting of two cubes. These cubes could be joined together
in an in�nite variety of ways by sliding faces by each other in small increments. We
wish to constrain these adjacencies. A patch is edge-to-edge if each of the prototiles
is decorated such that:

1. The decoration consists of a �nite number of nonintersecting open discs, called
facets .

2. The facets form a cover for the boundary of the prototile.

3. Given any two tiles in the patch, placing prototile decorations in the same
positions at which prototiles were placed to instantiate the two tiles results in
the placement of a facet from each tile consisting of exactly the same points
as the edge shared by the adjacent tiles.

Any set of prototiles may be altered by adding bumps to its faces so that it will
only admit edge-to-edge patches. Hereafter, we will only consider prototiles with
de�ned facets and whenever we say a protoset admits a patch, we mean that the
protoset admits an edge-to-edge patch according to this �xed decoration of facets.
If we need to emphasize that non-edge-to-edge patches are prevented by the shape
of a protoset's facets, we say that protoset forces edge-to-edge placement .

In fact, the geometry of the decoration of a prototile completely determines its
shape, since the union of its facets covers the tile's boundary. Note that a given set

2The term \edge" may be misleading because in three dimension, edges have area. The name
\edge" is taken from the two-dimensional case, in which edges are arcs.
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of prototiles may still admit uncountably many di�erent patches, but that no two
will have all the same adjacencies.

The facets of Robinson's triangles and Danzer's tetrahedra are marked in special
ways, and only similarly-marked facets can be placed together. Many similar systems
of marking, known as matching rules, are often used in tiling literature to constrain
the ways in which tiles are allowed to �t together. Usually, as is true for Robinson's
and Danzer's prototiles, these markings are used as a shorthand and the facets can
be deformed in such a way that unmarked, deformed tiles match in exactly the
same ways as the marked tiles. If matching rules are used, we require that they
can be represented by a table telling whether any pair of facets from the protoset
is permitted to match or not. We will not examine matching rules that involve
the examination of surrounding area beyond two adjacent tiles to determine if they
match. It is important to note that local matching rules are not generally su�cient
to grow in�nite tilings without backtracking, but they are necessary.

4.2 Tilings and Aperiodicity

If a union of the tiles of a patch �lls space, the patch is called a tiling . Whenever
a tile is instantiated in a tiling, every facet of its prototile type is aligned with an
edge of the tiling, and thus all tiles are interior. A consequence of our requirement
that the prototiles of a protoset have minimum size is that tilings have countably
many tiles.

A tiling is periodic if there is a translation by a positive distance that maps the
tiling to itself. This de�nition of periodic is nonstandard. Traditionally, periodic
tilings in two dimensions must have at least two nontrivial translational symmetries
in nonparallel directions. If this is the case, then the entire tiling can be formed by
repeated placement of a single decorated parallelogram in a single orientation, as
can be seen in Figure 2.2. Three-dimensional tilings with three nonparallel transla-
tions can be formed from a period parallelepiped. Now consider a three-dimensional
tiling that has only one direction of translational symmetry. This entire tiling can
be formed by repeated placement of a single planar strip perpendicular to the direc-
tion of translational symmetry that has a width that is a multiple of the distance
of translation. Such a tiling cannot be formed by repeated placement of any �-
nite pattern. However, we are chie
y interested in tilings that are nonperiodic.
Two-dimensional tilings taken from slicing planes perpendicular to the direction of
translational symmetry are not periodic, but we do not consider such a structure
su�ciently \irregular" to be called nonperiodic.

Nonperiodic tilings can be constructed by placing tiles radially or by placement
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of several intersecting grids spaced quasiperiodically, but it is di�cult to �nd a �nite
family of shapes that will only tile aperiodically. A protoset is aperiodic if it admits
at least one tiling, but admits no periodic tilings. Penrose's rhombs and the kites
and darts are aperiodic protosets consisting of only two tiles. It is currently and
open question whether there is an aperiodic protoset consisting of a single tile.

4.3 In
ation

In
ation is a technique for cutting up a patch in order to form another patch consist-
ing of smaller tiles with shapes equivalent to those of the original tiles. Depending
on the ways in which these cuts are made in relation to the original tiles and whether
the cutting process is invertible, we can use the concept of in
ation to prove that
protosets are aperiodic and to form data structures that represent the patches they
admit. In
ation can iterated to form patches by increasing numbers of successively
smaller shapes, as can be seen by viewing Figure A.1{Figure A.10 in reverse or-
der. In
ation is best understood visually and it will be helpful to spend some time
contemplating these pictures before we de�ne the process more carefully below. To
do so, we �rst de�ne what it means for tiles to have equivalent shapes and de�ne
operations for cutting apart and reassembling tiles.

Earlier, we mentioned that prototiles could be deformed so that they can only
be placed edge-to-edge or can only be placed adjacent according to certain matching
rules. A set of prototiles can also be deformed with no e�ect on the ways in which
the prototiles can be placed to form patches. We consider two protosets surrogates
if they have basically the same shapes3 and equivalent matching rules. In two
dimensions, we think of forming transparent sheets with an overlaid destination
prototile shape and position for each source prototile. Two protosets are surrogates
if a single set of transparencies can be constructed so that given any patch by one
protoset, each of its tiles can be replaced by a destination tile and the result can be
scaled to form a patch admitted by the other protoset. Speci�cally, two protosets P
and P 0 are surrogates if and only if a metric equivalence H deforms the prototiles
and facets of P such that given any patch G admitted by P , if every tile t in G

were instead instantiated as H(t) a patch would result that is a uniform scaling
of some patch admitted by P 0. We will refer to the magnitude of this scaling as

3Gr�unbaum and Shephard[GS87] have a concept that is similar to that of surrogate protosets.
They say tiles have the same \basic shape" if one can be obtained from the other by altering its
facets. G�ahler, Baake, and Schlottmann[GBS94] de�ne another similar concept as a relationship
between tilings. They say that two tilings are mutually locally derivable if (after rotation and
scaling) any ball in one tiling is uniquely determined by a ball in the other tiling with a radius that
is a constant amount larger.
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the expansion factor from G0 to G. H�1 can be used to reverse this process and
equivalent patches admitted by P and P 0 can be mode to correspond by a bijection.

A patch G0 is a composition of the patch G if every tile of G0 is a union of tiles
of G. Similarly, a protoset P 0 is a composition of the protoset P if all prototiles of
P 0 are each congruent to patches admitted by P . Note that if the protoset P 0 is a
composition of P then every tiling admitted by P 0 is a composition of some tiling
admitted by P and if a single tiling G0 is a composition of G then the protoset that
admits G0 is a composition of the protoset that admits G. The term decomposition

will refer to the reverse of composition. If the patch G0 is a composition of G then
G is a decomposition of G0, and similarly for protosets. A composition is formed by
attaching together smaller tiles to form larger tiles while a decomposition is formed
by dividing larger tiles into smaller tiles.4

Theorem 1 If the protosets P and P 0 are surrogates, P 0 is a composition of P ,

P forces edge-to-edge placements, and some prototile p0 2 P 0 is composed from a

patch containing an interior tile of prototype p such that p and p0 are corresponding
surrogate prototiles, then P tiles the plane.

Proof: We will prove this statement by constructing a series of increasingly large
patches, each of which lies inside its successor. We will see that each of these patches
can be extended in all directions, hence the patch at the limit of this process is a
tiling. The �rst patch in this series, Gp consists of a single tile of prototype p. For
each patch G in the series, the next patch, INF(G), is obtained by the following
process:

1. Find G0, the surrogate patch corresponding to G.

4Decomposition is not always de�ned in this way. An alternative de�nition of
in
ation[GS87][LS86] concerns a decoration of prototiles that is used to obtain in
ated tilings.
Decorations consist of edges that become smaller tiles when each tile is replaced with its decoration
and the original edges are removed. This allows the creation of new tiles that overlap two or more
tiles from the previous level of in
ation. We do not use this de�nition because it is less useful for
describing �nite patches, it makes proof of aperiodic properties more di�cult, it may be more com-
plicated to invert, and the data structures we eventually use to represent tilings cannot represent
this type of in
ation. The Penrose kites and darts, and rhombuses are classes of tilings that are
most simply described with in
ation decorations. However, Penrose used a de�nition according to
in
ation to analyze the �rst aperiodic set he discovered and his tilings by two prototiles can be
analyzed in terms of composition as well. A potential area for future investigation would be the
study of whether in
ation by this type of decomposition decoration is more or less general than the
method of in
ation we use here and whether it is possible to convert a representation in one form
to the other.
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2. Find INF(G), admitted by P , by dividing each tile of G0 in the same way that
its prototype is composed from prototiles of P .

We write INF(INFn(Gp)) as INFn+1(Gp), and our series of extending patches is:

Gp = INF0(Gp); INF(Gp) = INF1(Gp); INF
2(Gp); INF

3(Gp); : : :

Now we need to demonstrate that for all n � 0, INFn(Gp) is contained inside
INFn+1(Gp). By contained inside, we mean that a subset of tiles of INFn+1(Gp) is the
same as INFn(Gp) and the tiles in this subset are all interior. This will demonstrate
that the patch INFn+1(Gp) can be extended in all directions. This property is true
when n is 0 because INF1(Gp) is the patch that p0 is composed from and the theorem
states that this patch contains an interior tile of prototype p. Because Gp consists
of a single tile of prototype p, INF0(Gp) is contained inside INF1(Gp). To show the
property holds for n = 1, we note that INF1(Gp) was formed by dividing the single tile
of INF0(Gp) according to the patch p

0 was composed from. Since INF1(Gp) contains
a tile of prototype p, the formation of INF2(Gp) will also divide this tile according
to the patch p0 was composed from. Since this tile is internal, INF1(Gp) is contained
inside INF2(Gp). This reasoning holds for all n � 0. Since INF0(Gp) is contained by
INF1(Gp) it is also true that INF

n(INF0(Gp)) is contained by INFn(INF1(Gp)) because
the generation of INFn(INF1(Gp)) involves n decompositions of the patch INF0(Gp),
which lies inside INF1(Gp) and this will form a patch congruent to INFn(INF0(Gp))
contained inside INFn(INF1(Gp)).

lim
n!1 INFn(Gp) is a tiling admitted by P . 2

Observations on Theorem 1:

An in
ation speci�cation is a protoset such as P 0 above, satisfying the conditions
of the theorem, and includes the correspondence between tiles that compose each
prototile of P 0 and the surrogate prototypes of these tiles. An in
ation speci�cation
completely determines the above construction. We will make extensive use of INF
as above. We say INF(G) is the in
ation of G and we call INFn(G) the n-th level

of in
ation of G. We will generalize the concept of in
ation to refer to any patch
admitted by the protoset P . INF(G) is taken by decomposing the surrogate patch
corresponding to G so that every tile is divided in the same way that its proto-
type was composed. Note that limn!1 INFn(Gp) is invariant under in
ation.

5 If a
protoset admits a tiling then every surrogate of that protoset admits a tiling as well.

5Lunnon uses a very similar construction for a tiling that is invariant under in
ation.[LP87].
In fact, this is a unique �xed point. INF(G) results in a tiling of the same size as G. We scale
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We also de�ne INF for any protoset P surrogate to an in
ation speci�cation P 0.
If G is admitted by P and G0 is the corresponding patch admitted by P 0 then INF(G)
is the patch admitted by P that corresponds to INF(G0).

In the theorem, we require that P force edge-to-edge placements so that when-
ever a patch admitted by P 0 is decomposed we are guaranteed that the resulting
patch admitted by P is also edge-to-edge. Any surrogate for P admits a tiling corre-
sponding to limn!1 INFn(Gp) so we can use Theorem 1 to prove that a protoset that
does not force edge-to-edge placement tiles the plane provided we can �nd an in
a-
tion speci�cation composed from the protoset in which tiles instantiated from the
in
ation speci�cation can only be placed adjacently if the tiles they are composed
from match up edge-to-edge along the edge of the adjacencies.

Any in
ation speci�cation can be used to construct in�nitely many equivalent
in
ation speci�cations with each prototile formed by increasingly large composi-
tions. If the in
ation speci�cation is as in the theorem, then for any n � 1,
Pn = fINFn(Gp) j p 2 P; patch Gp contains a single tile of prototype pg is also
an in
ation speci�cation. We say an in
ation speci�cation is minimal if it cannot
be constructed in this manner from a protoset with fewer prototiles. Any prototiles
of P that do not occur in the composition patches of prototiles of P 0 are never
instantiated in limn!1 INFn(Gp). If a subset of the prototiles of P

0 that includes p0

is formed from patches that contain no tiles that have a surrogate prototype that is
outside the subset then no prototiles outside the subset will ever appear in the tiling
generated by Theorem 1 and these prototiles can be discarded. If no such subset
exists then the in
ation speci�cation is irreducible.6

Our theorem requires that some prototile of P 0 is composed from a patch con-
taining a tile of its surrogate prototype. The existence of this tile guarantees that
the series of patches generated will always contain a tile of that type and also that
the number of tiles at each in
ation level is greater than the number of tiles for the
previous level. The internal location of this tile guarantees that the patch at each
level of in
ation extends the previous level in all directions. However, minimal and
primitive in
ation speci�cations often do not contain such an internal tile. In fact,
neither Robinson's triangles nor Danzer's tetrahedra have in
ation patches with any

each in
ation by the expansion factor of the surrogate protosets, producing a patch with smaller
tiles that can be translated to �t directly above the previous level of in
ation. In the limit, this
produces a patch of in�nitely small tiles packed into the shape of a single original tile (distorted
by many surrogations). It can be shown that if in
ation is de�ned in this manner then, using the
Hausdor� metric, the in
ation of any patch is closer to limn!1 INFn(Gp) than to the unin
ated
patch. Thus, limn!1 INFn(Gp) is the unique �xed point of INF. In fractal geometry, this is the
Contraction Mapping Theorem.[Bar93]

6The term irreducible comes from Lunnon [LP87] and he develops these concepts more fully.
We draw on his analysis in the next paragraph.



CHAPTER 4. TILINGS IN SPACE 46

internal tiles at all. However, it is possible to construct a larger protoset that does
by in
ating the patches that the prototiles are composed from, as described previ-
ously. If no such in
ation of the prototiles contains an internal tile then in
ation
can only generate a strip of tiles rather than a tiling. Note that this does not mean
that protoset cannot tile the plane, but rather that the in
ation speci�cation cannot
be used to create a tiling. If an in
ation of one of the prototiles eventually contains
an internal tile, then it is possible to show that a later in
ation of the prototile will
contain a tile of that prototile type. Higher levels of in
ation will contain in
ations
of the internal tile. If one of these does not contain a tile of the desired prototile
type then the in
ation speci�cation is not primitive. The prototile that does not
appear in these in
ations can be discarded and the construction repeated with fewer
prototiles. If in
ation can generate a tiling then an in
ated protoset containing a
prototile of the desired form will eventually be found. If the in
ated protoset admits
a tiling, then the original, surrogate protoset admits a tiling as well.

In our proof of Theorem 1, we showed that if INF0(Gp) is contained inside
INF1(Gp) then INFn(INF0(Gp)) is contained inside INFn(INF1(Gp)). It will be useful
to further describe the relationship between tilings at corresponding levels of in
a-
tion. Consider an arbitrary patch, G, and color two of its tiles blue and green. As
INFn(G) is constructed, always decompose tiles of one of these colors into tiles of
the same color. Then INFn(G) will contain distinct blue and green regions. The
subset of tiles having either of the colors forms a patch. If two adjacent tiles of G
were chosen, then tint the edge between them pink. Whenever a patch is in
ated,
if a tile has a pink facet, then all facets of the tile's decomposition that lie along the
pink facet are tinted pink as well. Then, every in
ation of G will have a blue and
green region that meet at a pink disc made up of the edges between blue and green
tiles.

Consider the patches G and G0 = INF(G). A �nite number of in
ations of a
patch that is not a tiling will never generate a tiling. Thus, if G is a tiling then G0

is a tiling and if G0 is a tiling then so is G. If INF is invertible over the range of
patches that are tilings then we say that the in
ation speci�cation that generates
INF possesses the property of unique in
ation.

Theorem 2 If an in
ation speci�cation possesses unique in
ation then the in
ation

speci�cation admits only aperiodic tilings.

Proof: If an in
ation speci�cation is unique then the in
ation of any two di�erent
tilings is di�erent. Every iteration of INF decomposes a tiling and reexpands the
result by the expansion factor of the in
ation speci�cation so that tiles of the same
size and shape are obtained. If a translation of distance d maps a tiling to itself,
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then a translation of distance dm maps an in
ation of the tiling to itself where m
is the expansion factor of the in
ation speci�cation. If the in
ation speci�cation is
unique then INF on tilings is invertible and the converse is also true. The inverse of
in
ation, de
ation, can be iterated, and translational symmetry is preserved with
distances diminishing according to powers of the inverse of m.

Assume that G, admitted by a unique in
ation speci�cation P , is a periodic
tiling with a translation of distance d > 0 that maps G to itself. Every prototile
of P contains a sphere of radius r. INFn(G) is taken to itself by a translation of
distance d

mn . However, the tiles of INFn(G) still contain balls of radius r. This is a

contradiction because for su�ciently large n, r > d
mn . No such translation can exist

and therefore, P is aperiodic. 2

A vertex con�guration is a minimum patch of tiles that meet at a single point
and completely surround that point. If all vertex con�gurations occur in a tiling
in
ated from a single tile then any local con�guration of any tiling admitted by the
protoset can be found in any other tiling.

Theorem 3 (Local Isomorphism Theorem) If some in
ation of a tile, INFn(p)
structurally contains every vertex con�guration then given any two tilings G and G0,
every �nite subpatch of T is structurally equivalent to in�nitely many subpatches of

T 0.

Proof: Every tiling contains an in�nite number of tiles of prototype pP . Any
tiling can de
ated n times and since its de
ation contains an in�nite number of
occurrences of t, the original tiling contains an in�nite number of patches congruent
to n in
ations of t. Therefore, any tiling contains an in�nite number of occurrences
of every vertex con�guration.

Given G, a subpatch of T , we de
ate T until G is contained within a single
vertex con�guration of INF�k(T ) for some k. The length of the smallest edge in
INF�k(T ) grows with k and when this edge is larger than the radius of a circle
containing G then G is within a single vertex con�guration v.

Now, given another tiling T 0, we can �nd G0 at in�nitely many places within T 0.
We know that the de
ation INF�k(T 0) contains an in�nite number of occurrences
of v. Since T 0 is the k-th in
ation of this de
ated tiling, it contains in�nitely many
occurrences of the k-th in
ation of v and each of these contains G. Therefore, any
�nite patch in any tiling can be found in in�nitely many places in any tiling. 2

A consequence of the Local Isomorphism Theorem is that every �nite region G

of any tiling admitted by the protoset can be found inside the patch produced by
an in
ation of some prototile, INFl(p).



Chapter 5

Generalization: Uniquely

In
atable Tilings

In Chapter 2 we described the construction of data structures for exploring a par-
ticular class of tilings: Robinson's triangles. Similar techniques can be used to form
data structures for exploring tilings formed from any prototiles that obey unique
in
ation rules by composition of tiles. Figure 5.1 demonstrates the relationship be-
tween a tiling by sets of points in space and its dual graph, a graph with a vertex
for each tile, and an edge between vertices for each pair of adjacent tiles. A tiling's
dual graph represents its structure|interconnections between adjacent tiles|while
discarding geometric information such as the shapes and positions of tiles.1

Given a description of a family of prototiles and an in
ation process, dual graphs
can be formed that represent the structure of the tilings admitted by the prototiles.
An in
ation speci�cation, as de�ned in Chapter 4 contains all the information that
is required in order to generate such a data structure.2 A tiling is explored by
constructing the dual graph of increasingly large patches as more distant tiles are
visited. Locations within a graph can be held as addresses of logarithmic length
in terms of the number of tiles in the currently constructed region. Because of
the way in which we form addresses, we will never actually store the dual graphs
of the patches we explore: an address, alone, holds the information we need to
investigate the dual graph of the patch it represents. This pretty result allows us to

1Maintaining this information would, of course, make the structure richer, at the possible expense
of signi�cantly increasing storage. We discuss in Section 6.3 a method for including the orientation
of tiles.

2Actually, in the case of symmetric tilings, additional analysis is required to recognize the ways
in which symmetries can occur, as is discussed in Section 6.1. Otherwise, explorations that cross a
tiling's line of symmetry would cause the examination of in�nitely-long addresses.

48
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Figure 5.1: A patch of Robinson triangles superimposed with its dual graph. Tiles
and edge adjacencies of the patch correspond to vertices and edges of the dual graph.
Thus, for example, land-locked tiles have dual vertices of degree 3.

explore absolutely precise representations of very large tilings using a small amount
of storage space.

5.1 Specifying a Protoset and In
ation Rules

In Chapter 4, we de�ned prototiles, edges, tiles, and patches as sets of points in
space. Below, we de�ne these concepts for tilings represented as dual graphs. These
discrete de�nitions are the representations we will use to form data structures. If we
need to clarify that we are talking about a patch as set of points in space we will refer
to a spatial patch and a patch represented as a dual graph will be referred to as a
dual patch. Section 5.1.6 describes a procedure for converting spatial representation
into dual representations.

A protoset speci�cation de�nes a family of prototiles and their facets and an
in
ation speci�cation de�nes a set of patches equivalent to each of the prototiles at
one level of in
ation. The protoset speci�cation and in
ation speci�cation contain
su�cient information to generate a data structure for exploring the dual graphs of
tilings admitted by the prototiles.

5.1.1 Protoset Speci�cation

Tilings are made up of tiles selected from a protoset , a �nite set of prototiles P =
fpi j 1� i�ng. The boundary of each prototile p 2 P is made up of a �nite set of
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facets, F(p) = fpi j 1� i�ng. A prototile speci�cation consists of a protoset P and
the facets of each prototile, F(p).

5.1.2 Patches

Tiles are the instances of prototiles that actually appear in a tiling. We say that
the prototile type of a tile is the prototile from which it was created. A tile's edges
are instances of the facets of its prototile type.

The structure of a region within a tiling is represented by a patch. A patch is
a triple of the form (T;P ;A). T = fti j 1� i�ng is a set of all tiles in the patch.
P : T ) P is a total function that maps every tile to its prototile type. The function
A relates neighboring tiles in the patch and is de�ned more precisely momentarily.

An edge in a patch has the form (t; e) where t is a tile and e is one of the facets
of its prototile type. Given a patch (T;P ;A), F(T;P) = f(t; e) j t 2 T; e 2 F(P(t))
denotes the set of all edges in the patch.

If two edges cover each other spatially they are said to be coincident and the
two tiles they lie on are adjacent .3 Every edge is coincident with at most one
other edge. The automorphism A : F(T;P)) F(T;P) determines the pairing of
coincident edges. In particular, A : (t; e) 7! (t0; e0) if and only if (t; e) and (t0; e0)
are coincident. Note that A is not de�ned on edges that are adjacent to no tile and
that A = A�1 on the range of A. Edges in the range of A are called interior edges
and edges not in the range are exterior . The set of exterior edges of a patch G is
called its boundary and is denoted B(G). See Figure 5.2 for an example of a spatial
patch and its representation as a dual patch.

The patch (T;P ;A) is considered a subpatch of (T �;P�;A�) if T � T �, P =
P� over the domain T , and A = A� over the domain F(T;P). If (T;P ;A) and
(T 0;P 0;A0) are subpatches of (T �;P�;A�) then (T;P ;A) and (T 0;P 0;A0) are distinct
if T \ T 0 = ;.

Given two patches G = (T;P ;A) and G� = (T �;P�;A�), we say that G is
structurally contained by G� if there exists a function H : T ) T � such that:

1. H is an injective function mapping tiles of G to tiles of G�

2. for all t 2 T , P(t) = P�(H(t))
3. for all (t; e) 2 F(T;P), if A : (t; e) 7! (t0; e0) then A� : (H(t); e) 7! (H(t0); e0)
3This de�nition of edge is not strictly analogous to the de�nition in Chapter 4 in that it dis-

tinguishes two sides of each edge. In Chapter 4, there was one edge for each pair of adjacent tiles
while here, if t is adjacent to t

0 then t has an edge to t
0 and t

0 has an edge to t.
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Figure 5.2: Notation for a patch. A set of prototiles (left) and a patch formed from
them (right). If the patch is G = (T;P ;A) then:

T = ft1; t2; t3; t4g
P = f(t1; b); (t2; a); (t3; a); (t4; b)g
A = f((t1; 4); (t2; 2)); ((t1; 5); (t4; 4));

((t2; 1); (t4; 5)); ((t2; 2); (t1; 4)); ((t2; 3); (t3; 3));

((t3; 3); (t2; 3)); ((t4; 4); (t1; 5)); ((t4; 5); (t2; 1))g
B(G) = f(t1; 7); (t3; 1); (t3; 2); (t4; 6); (t4; 7); (t1; 6)g
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If G is structurally contained by G� and G� is structurally contained by G then H
is bijective and we say that G and G� are structurally equivalent . Figure 5.3 shows
that Danzer's B-tile is structurally contained by the A-tile.
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Figure 5.3: The patch on the left is structurally contained by the patch on the
right. These are the in
ation patches of Danzer's B-tile and A-tile (left-handed).
The function H as in the de�nition of structural equivalence would map tiles in the
patch on the left to tiles of the same name in the patch on the right. The fact that
the in
ation patch of the B-tile is contained in the in
ation patch of the A-tile and
that the in
ation patch of the A-tile contains no A-tiles leads us to believe that
there might be a nicer way to partition the Danzer tiles that would involve fewer
pieces.

5.1.3 Patch-Sides

It is often necessary to describe the spatial arrangement of the boundary of a patch
by breaking the edges that lie on it it into sections and establishing an ordering on
the edges within those sections. A patch-side is an ordered list of exterior edges
of the form ((t1; e1); (t2; e2); : : : ; (tn; en)). A patch-side enumerates the edges of a
contiguous section of the boundary. In 3-space, a union of closures of the edges of
a patch-side is a disc. The set of patch-sides of a patch G is denoted S(G) and
partitions B(G).

We say that the patch-side S is spatially contained by S0 if there is a rotation
and translation X and a mapping M : S ) S0 such that for every edge e 2 S,
the set of points contained by X(e) is congruent to the points of M(e). If S is
spatially contained by S0 and S0 is spatially contained by S then S and S0 are
spatially congruent . We require that a convention be established so that all pairs
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of spatially congruent patch-sides S = (ei j i � 1 � n), S0 = (e0i j i � 1 � n) are
formed such that M(ei) = (e0i) for all i � 1 � n. Intuitively, this simply means
that all patch-sides that have edges of the same shape and in the same arrangement
must have their edges listed in the same order. In two dimensions, listing edges in
clockwise order satis�es this requirement. In three dimensions, each class of spatially
congruent patch-sides must be identi�ed and assigned some �xed ordering.

If two patch-sides from two di�erent patches are spatially congruent and the
patches can be slid together so that their patch-sides coincide while the patches
lie opposite each other across the patch-sides, then pairs of individual edges from
the boundaries of the two patches will be juxtaposed. Our ordering convention
on patch-sides allows us to �nd these coincident edges because the edges listed in
one patch-side coincide spatially with the edges of the opposing patch-side listed
in reverse order, as can be seen in Figure 5.4 and Figure 5.5. Given patch-sides
S = ((t1; e1); (t2; e2); : : : ; (tn; en)) and S0 = ((t0n; e0n); (t0n�1; e0n�1); : : : ; (t01; e01)), the
total functionMSS0 : S ) S0, which is one-to-one and onto, pairs edges in this way.
Speci�cally, MSS0 : (ti; ei) 7! (t0i; e0i). This function will be used to join patches
together along spatially-congruent patch-sides.

(t1,e1)
(t2,e2) (t3,e3)

(t4,e4) (t5,e5) (t6,e6)
(t7,e7)

(t'1,e'1)
(t'2,e'2) (t'3,e'3)

(t'4,e'4) (t'5,e'5) (t'6,e'6)
(t'7,e'7)

Figure 5.4: Joined two-dimensional patch-sides. When two patch-sides are placed
together, their edges match in pairs. If S = ((t1; e1); (t2; e2); : : : ; (tn; en)) and S0 =
((t0n; e0n); (t0n�1; e0n�1); : : : ; (t01; e01)) then MSS0 : (ti; ei) 7! (t0i; e0i) is the pairing of
matching edges. In two dimensions, listing edges of patchsides in clockwise order
ensures that coincident edges are always paired byM appropriately.
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Figure 5.5: Joined three-dimensional patch-sides. Two patches that can be joined
together along spatially-congruent patch-sides. The edges of one of these patch-sides
would be paired with the edges of the other in reverse order. Since the patch-sides
have the same shape, but di�erent sides face outward from the patches, the patch-
sides are formed by enumerating the edges in opposite order, as shown by the arrows.

5.1.4 Composition

Composition is a method of forming a patch by attaching together smaller patches
along their patch-sides. If G = fGi j i�1�ng is a set of patches and S = f(Si; S0i) j
i�1�mg is a set of pairs of patch-sides then CGS = (TGS;PGS;AGS) denotes the
composition of G along S. Figure 5.6 presents a composition of patches spatially
and, analogously, as dual graphs. Each pair in S must have patch-sides that are
from di�erent patches in G and that can be attached. Thus, for each pair (S; S0)
in S, jSj = jS0j and S 2 S(G); S0 2 S(G0) for some G;G0 2 G; G 6= G0. Here we
have used jSj = jS0j to indicate that S and S0 have the same length. Spatially, in
order for this composition to make sense, all the pairs of patch-sides of S must be
spatially congruent.

The composed patch CGS is formed as a union of the patches in G with addi-
tional adjacencies between tiles that are connected by patch-sides in S, as follows:
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Figure 5.6: Composition of a set of patches. Patches are composed spatially (left)
and as dual graphs (right). Separate patches (above) are attached below. Dark
zigzags (upper-left) are placed between the three pairs of patch-sides that will be
attached together. Grey edges (upper-right) indicate new adjacencies formed by the
composition.
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CGS = (TGS;PGS;AGS) where:
for all G 2 G; let G = (TG;PG;AG)

TGS =
[

G2G
TG

PGS =
[

G2G
PG

AGS =
[

G2G
AG +

[

(S;S0)2S
MSS0

All tiles in the patches of G are contained in CGS and have the same prototile
type. Two tiles of CGS are adjacent if and only if they were adjacent in some patch
of G or they lie opposite each other along joined patch-sides of S.

5.1.5 In
ation

In Section 4.3, we de�ned the concept of an in
ation speci�cation, a set of prototiles
composed from surrogate prototiles and showed that if the in
ation speci�cation is
unique, in
ation can be used to generate aperiodic tilings. This is the technique our
data structures will use to generate the dual graphs of the tilings we wish to model.

Each prototile p is associated with an in
ation patch that is written Ip. This
patch describes the structure that will replace tiles of prototype p when they are
decomposed in order to in
ate a tiling. The boundary of an in
ated prototile is
divided into sections corresponding to the prototile's facets and these sections are
used to form the patch-sides of the in
ation patches. For a prototile p, S(Ip) =
fI(p;e) j e 2 F(p)g, where I(p;e) denotes the patch-side along facet e of the in
ation
patch for p. The in
ation patches Ip and their patch-sides I(p;e) make up the in
ation
speci�cation.

Once an in
ation speci�cation is de�ned, we can construct an in
ation of any
patch G by composing in
ation patches associated with individual prototiles. For
every tile of G, we substitute an in
ation patch of that tile's prototile type and the
in
ation patches are joined together along the adjacencies of G. Since the patch-
sides of in
ation patches match together in exactly the same way as the prototiles
themselves, the patch-sides joined by these adjacencies will be spatially congruent.
Because tiles of the patch we are in
ating may have the same prototile type, it is
important to form the composition from structurally equivalent duplicates of the
in
ation patches. Given a patch G = (T;P ;A), its in
ation, INF(G) is constructed
as follows:



CHAPTER 5. GENERALIZATION: UNIQUELY INFLATABLE TILINGS 57

for all t 2 T
let p = P(t)
de�ne Gt, a patch structurally equivalent to Ip where H is
the function that takes tiles in Ip to corresponding tiles in
Gt.

for all s 2 F(p)
de�ne G(t;s) = ((H(t); e) j (t; e) 2 I(p;s))

if G = fGt j t 2 Tg and S = f(G(t;e); G(t0;e0)) j A((t; e)) = (t0; e0)g
then IG = CGS

Levels of in
ation are written with increasing powers: G = INF0(G), INF(G) =
INF1(G), INF2(G), INF3(G), : : :. It is sometimes convenient to use the concept of
in
ating a single prototile. When we write INF(p), this is a shorthand for INF(Gp)
where Gp is a patch that contains a single prototile of prototype p. INF(p) is
structurally equivalent to Ip.

5.1.6 Converting Spatial Representations

Since dual graphs contain no positional information, translational symmetry has no
meaning in this context and thus it is di�cult to de�ne aperiodicity. However, in
Section 4.3 we showed that an in
ation speci�cation generates aperiodic tilings if
it possesses unique in
ation. Here, we show how to convert such a spatial in
ation
speci�cation into an in
ation speci�cation for dual patches. It is important to work
in this direction, because a spatial in
ation speci�cation does not necessarily exist
that is equivalent to an arbitrary in
ation speci�cation for a dual patch. Only if a set
of prototiles tiles the plane, can a dual patch be said to represent their structure.
If in
ation speci�cation for dual graphs is a representation of a spatial in
ation
speci�cation with unique in
ation, then the in
ation speci�cation for dual graphs
models the structure of aperiodic tilings.

Given a tiling and a region R within it, it is straightforward to construct a patch
G = (T;P ;A) that represents the dual graph of R. An element t 2 T is created for
every tile in R and P(t) is de�ned according to the shape of this tile. Coincident
edges of R result in adjacencies de�ned by the function A. If R is an entire tiling
or an unbounded region then T will contain a countably in�nite number of tiles.
However, we will primarily be concerned with �nite patches consistent with one or
more in�nite tilings.

Patch-sides can also be converted in this manner. For each edge on a patch-side,
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an element of the dual graph's patch-edge is formed by taking the prototype of the
adjacent tile and the facet that corresponds to the edge. It is important to order
these edges in such a way that whenever patches are composed, the appropriate tiles
of their patch-edges are joined together. Whenever a patch-side is enumerated, we
�rst check to see if a spatially congruent patch-side has been enumerated previously.
If this is the case and the same side of these patch-sides face outward from their
patches, then the edges of the new patch-side are enumerated in the same order as
the other. If opposite sides face outward then the edges are enumerated in reverse.
Figure 5.5 shows two patch-sides that would be enumerated in opposite order. In
two dimensions, it is su�cient to list all edges in clockwise order. Whenever patch-
sides S and S0 can be juxtaposed, their edges will be enumerated in opposite order
and the mappingMSS0 will correctly join adjacent tiles.

Spatially, an in
ation speci�cation is a protoset P 0 with prototiles composed of
tiles from another protoset P in such a way that P and P 0 are surrogates. Each
prototile p of P corresponds to a patch that forms a prototile of P 0. Ip is formed
by converting this spatial patch to a dual patch. All the Ip and I(p;e) of an in
ation
speci�cation equivalent to the spatial in
ation speci�cation are constructed in this
way. Tilings generated by this in
ation speci�cation will model tilings admitted by
the spatial in
ation speci�cation.

5.2 Exploring In
ated Patches

The construction of successive levels of in
ation of a patch by composition of the
in
ation patches Ip can be conducted algorithmically according to a process that
follows naturally from the notations we have developed. A protoset speci�cation,
in
ation speci�cation, the operations M and C, and the construction of INF(G)
from G can represented in a straightforward manner.

Given a patch G we can form arbitrarily large patches INFn(G) in
ated from that
patch. Because we will be examining tilings with unique in
ation (see Section 4.3),
every �nite region R of any tiling formed from the protoset can be found inside
the patch produced by some level of in
ation l of some vertex con�guration v. If
Local Isomorphism also holds for the protoset (Theorem 3 holds if some in
ation of
a tile contains all con�gurations) then a single tile INF0(p) will, after some number
of in
ations m, contain every vertex con�guration, and then INFm+l(p) will contain
R. Here we will restrict our attention to the growth of in
ated patches from a single
prototile, although vertex con�gurations or arbitrary patches can be in
ated in the
same manner.
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5.2.1 E�ciency

Now we need to consider the e�ciency of constructing such patches. Say that we
have INFl(p) and wish to construct INFl+1(p), which will contain k tiles and that
none of our prototiles contains more than f facets. INFl+1(p) will have O(kf) edges
and so can be represented using O(kf) storage space. Recall from Section 5.1.4 and
Section 5.1.5 that INFl+1(p) is formed as CGS where G is a set of patches to be
joined along the patch-sides S. INFl+1(p) is formed by the following sequence of
steps:

1. For every tile in INFl(p) of prototype p, create a structurally equivalent copy
of the in
ation patch Ip and add it to G.

2. For every adjacency in INFl(p), create a pair (S; S0) and add it to S.

3. Form a union of the elements (T,P,A) of each of the patches in G.

4. Add to this union the adjacenciesMSS0 for each (S; S0) in S.

Each step can be completed in time proportional to the size of the result, INFl+1(p).
All the patches of G are structurally contained by INFl+1(p). Thus copying them
(step 1) and unioning them (step 3) require time proportional to the size of INFl+1(p).
Step 2 adds an element to S for each adjacency of INFl(p) and there are fewer
adjacencies in INFl(p) than in INFl+1(p). In step 4, for some (S; S0),MSS0 is formed
by traversing the edges of S forwards while traversing the edges of S0 backwards.
This will produce the adjacencies added by the connection of S and S0 in time
proportional to the number of these adjacencies and step 4 creates only a subset
of the adjacencies of INFl+1(p). Therefore, INFl+1(p) can be formed in O(kf) total
time.

Note that no reference is made to the size of the in
ation patches Ip in this result.
A larger or smaller in
ation speci�cation does not a�ect the order of operation when
the result of the construction contains a �xed number of tiles. At successive levels
of in
ation, the number of tiles is multiplied by a factor proportional to the number
of tiles in the in
ation speci�cation, but this is accounted for by the inclusion of the
number of tiles, k, itself, in the order of operation. Because k grows exponentially
in terms of the level of in
ation, l, the number of tiles in INFl(p) is some fraction
of the number of tiles in INFl+1(p). In order to construct INFl(p) from INF0(p), the
previous levels of in
ation, INFi(p) for 2 � i � (l � 1), must �rst be constructed.
However, because f is �xed for this construction and the number of tiles in these
patches grows exponentially, the entire sequence of constructions still requires time
proportional to the number of tiles in the patch INFl+1(p), k. Therefore, given a
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prototile speci�cation and an in
ation speci�cation, the in
ated patch INFl(p) can
be formed in O(kf) time where k is the number of tiles in INFl+1(p) and f is the
number of facets of the prototile with the most facets. We normally regard f as
�xed by some particular protoset and consider the construction of INFl(p) as O(k).

5.2.2 Limitations

The method of exploring aperiodic tilings just described is useful for applications
that visit most or all vertices of a �xed in
ated patch. In this case, O(k) time is
unavoidable and if information is stored with vertices that are visited then O(k)
space is required as well. However, this method is inconvenient if a user wishes
to explore only a small section of an in
ation patch or if the area to explore is
determined while the exploration is being performed. For example, a physicist might
want to simulate the electrical properties of an in�nitely large quasicrystalline tiling
in which each of the tiles is initially assigned a neutral charge. Assigning charge to
some tile would then set o� a process that would modify the charge of neighboring
tiles and these tiles would, in turn, a�ect their neighbors. Eventually these e�ects
would be su�ciently dissipated as to be considered irrelevant, but the distance at
which this happens and the direction the charge travels would not be known in
advance.

The above approach for representing aperiodic tilings has two important short-
comings. First, it is not expandable|the region to be explored must be determined
in advance. A user of this system might be forced to request the construction of
a patch large enough to encompass everywhere their exploration might conceivable
proceed, but the actual exploration path might only involve a small portion of this
patch. Second, this representation fails to take advantage of self-symmetries of the
in
ation process. Consider the l-th level of in
ation of some prototile, INFl(p). If l
is suitably large, then this patch will contain many tiles of any particular prototile
type. Say that INFl(p) contains d prototiles of its own type p. When the next level
of in
ation INFl+1(p) is constructed, every tile of type p is replaced with the same
in
ation patch, Ip. This results in the repeated insertion of a large amount of du-
plicate information into the data structure. At level l + 2, tiles of the same type
in INFl(p) will have been expanded twice to form INFl+2(p), which will contain d

duplicates of the patch INF2(p) and these copies will, in turn, contain d2 copies of
the patch Ip.

These problems can both be addressed by the observation that every patch
INFl(p) is structurally contained by some patch INFl+1(p0) at the next level of in
a-
tion. This property allows us to extend the size of a patch, constructing additional
tiles beyond its boundary by �nding a patch at the next level of in
ation that struc-
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turally contain the current patch. Because any given patch could lie in an in�nite
number of tilings, there will often be several patches at the next level of in
ation that
could contain the current patch and the user will have the option of choosing which
of these candidates the current patch actually lies inside. If a user exploring the
patch INFl(p) discovers that the investigation needs to proceed beyond the patch's
boundary then our data structure can construct a patch INFl+1(p0) and pretend that
the user had, in fact, really been exploring a subsection of this larger patch all along.
This property will allow us to construct a method of addressing the tiles within a
patch so that representing the structure of a patch is dramatically more e�cient in
terms of storage space. In Figure 5.7, larger and larger patches must be grown in
order to encompass a user's path in a tiling by Robinson's triangles. In the following
section, we prove our observation, concerning the self-similarity of in
ation.

Figure 5.7: Growth of larger patches as a tiling by Robinson's triangles is explored.
Initially, our data structure models only the single tile (the darkest triangle) from
which the exploration begins. Whenever the user leaves the currently represented
area, a larger patch must be constructed. Lighter grey shades indicate the areas
added by an exploration path indicated by the arrow.
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5.2.3 Self-Similarity of In
ation

The in
ation speci�cation consists of in
ation patches that are inserted in place of
each tile in a patch to form the patch's in
ation. When we examine the series of
in
ations INF0(p), INF1(p), : : : for all prototiles p, the in
ation speci�cation also
de�nes the macro structure of these prototile in
ations. INF1(p) is the in
ation
patch for p, INF2(p) is formed by inserting in
ation patches in place of the tiles
of INF1(p), and INF3(p) is formed by performing this substitution yet again. Each
tile of INF1(p) has been substituted for twice in the formation of INF3(p). Another
way of describing this in
ation is that INF3(p) is formed by replacing every tile in
INF1(p) of prototype p with the patch INF2(p). An alternative way of understanding
the in
ation process is that the patch INFl(G) is formed by substituting the patch
INFl�1(p) for every tile of type p in G. This is not quite precise because we have
not de�ned patch-sides for the INFn(p), but it is easy to imagine how this would be
accomplished. Now it can be seen that any prototile in
ation INFl(p0) is structurally
contained by the larger prototile in
ation INFl+1(p) if and only if a tile of type p0

lies in the in
ation patch for p. If there are several such tiles, then INFl(p0) can be
located within INFl+1(p) in several ways.

Theorem 4 If the in
ation patch of a prototile p, Ip = (T;P ;A), and t1; t2; : : : ; tn 2
T are tiles of the same prototype P(t) then INFl(P(t)) is structurally equivalent to

n distinct subpatches of INFl+1(p).

To prove this, we �rst need to show that in
ation preserves the structural equiv-
alence of patches.

Lemma 4.1 If G is structurally equivalent to n distinct subpatches of G� then

INF(G) is structurally equivalent to n distinct subpatches of INF(G�)

We show this by examining the construction of the in
ation of a patch from
Section 5.1.5. In
ation of the patch G occurs by forming patches Gt for each tile
t in G, where Gt is a copy of the in
ation patch for the prototype of t. INF(G)
is formed by sewing together these Gt along patch-sides corresponding to adjacent
edges of G.

If two patches G andG0 are structurally equivalent then a functionH pairs tiles of
G with equivalent tiles ofG0. Equivalent tiles in each patch have the same prototypes
and are adjacent to equivalent tiles. The in
ation of a patch is determined by the
prototypes and adjacencies of its tiles, so the construction of INF(G) is the same as
INF(G0). Thus if G and G0 are structurally equivalent then INF(G) and INF(G0) are
structurally equivalent as well.
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Given G and G0, distinct subpatches of G�, INF(G�) can be divided into distinct
subpatches structurally equivalent to INF(G) and INF(G0). These subpatches are
unions of the Gt from the construction of INF(G�) for all t in G or G0 respectively.
Now we can �nd the distinct subpatches promised in the lemma:

Say G is structurally equivalent to G1; G2; : : : ; Gn, subpatches of
G�.

For all i�1�n:
Let G�i = (T;P ;A) where T =

S
t2Gi

Gt

G�1; G�2; : : : ; G�n are distinct.

INF(G) is structurally equivalent to G�1; G�2; : : : ; G�n. 2

The lemma carries us almost to Theorem 4. The theorem is trivially true for l = 0
since we are given that the tiles t1; t2; : : : ; tn are in Ip = INF1(p). Thus, INF0(P(ti))
is structurally equivalent to n distinct subpatches of INF1(p) and the lemma can be
iterated to show that INFl(P(ti)) is structurally equivalent to n distinct subpatches
of INFl+1(p) for all l > 0. 2

5.3 The Address Adjacency Algorithm

An address is a series of digits that identi�es a single tile within some patch INFl(p)
where l is the number of digits in the address. Digits are chosen from tiles in
the in
ation patches. Given such an address, we call INFl(p) its extent . A single-
digit address A1 is a tile within the in
ation patch of some prototile p1. If a more
signi�cant digit is added to A1 to form the address A2, this two-digit address locates
a tile within the second level of in
ation of some prototile p2. However, we form
addresses in such a way that the extent of A1 is structurally contained by the extent
of A2. If Ip2 contains n tiles of type p1 then Theorem 4 says that n di�erent sections
of the extent of A2 are structurally equivalent to A1 and the second digit of A2 is
used to identify one of these sections. Each additional more signi�cant digit of an
address describes the location of the patch addressed by the previous digits within
a larger patch at the next level of in
ation. Given an address Al of length l, the
tile's location within the patch INFl(p) is found by taking the digits from most to
least signi�cant. The most signi�cant digit of the address identi�es a subpatch
of INFl(p) within which the addressed tile is located. This patch is structurally
equivalent to INFl�1(p0) where p0 is the type of the address made from the �rst l� 1
digits of Al. This smaller address can, in turn, be used to narrow the location of
the tile addressed by Al to an even smaller subpatch of INFl(p) that is structurally
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equivalent to INFl�2(p0). When this process is continued for all l digits, the subpatch
is narrowed to a single tile.

It is notationally convenient to de�ne a disconnected patch I = (TI ;PI;AI),
which contains all of the in
ation patches of the form Ip. If for any p 2 P , Ip =
(Tp;Pp;Ap) then let I = (

S
p2P Tp;

S
p2P Pp;

S
p2P Ap). Then an address is a list of

the form (ai j ai 2 TI ; 1� i � l) such that for all 1 � i � (l � 1), if ai 2 Tp then
PI(ai+1) = p. We will often write the number of digits, l, of an address A as jAj. If
the addresses A and A0 have the same last digit and jAj = jA0j then the addresses
have the same extent and we say the two addresses are consistent .

Each digit of an address is the position of a tile in one of the in
ation decorations
Ip inside TI . The only limitation on the digits of an address is that the type of
decorated prototile that the digit is inside, p, must be the same as the prototile type
of the next digit. This requirement guarantees that if a digit is added to an address
the extent of the new address structurally contains the extent of the shorter address.
jAj is logarithmic in terms of the number of tiles in the extent of A, which allows us
to store locations within very large patches using a relatively small number of bits.
If jAj is countably in�nite then we call A an index sequence. An index sequence is,
in a sense, the location of a tile within an in�nitely large in
ated patch. An index
sequence completely determines a tiling that surrounds a single tile.

5.3.1 Adjacency

It is not remarkable that we can address patches of tiles using a logarithmic number
of digits. However, our addressing scheme follows the self-symmetrical structure
of the in
ations of tiles. This is important because we would like to be able to
determine which tiles are adjacent by examining their addresses. Tiles that are near
each other are likely to have the same trailing digits. For example, two consistent
addresses that di�er in only their �rst two digits locate tiles that are both within
a section of their extent that is structurally equivalent to some INF2(p). Spatially,
tiles that di�er only in their �rst n digits can be contained by a ball of radius rn

where r is the radius of a ball that contains the largest in
ation patch. However,
not all nearby tiles have similar addresses. Two adjacent tiles might di�er in every
digit but the last.

In order to use addresses to representing patches of tiles, a method must be
found for computing adjacencies. The �rst step towards �nding such a method is to
analyze the ways in which two adjacent tiles can be related at two successive levels
of in
ation. Throughout this discussion, we will use subscripts to refer to elements
of the in
ation patches where Ip = (Tp;Pp;Ap) for all p 2 P .
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De
ation Adjacency Rules We �rst form two mappings X and N called the
external and internal edge de
ation rules . Consider the one-digit address A = (a)
that is the location of a tile a in an in
ation decoration Ip. We are interested in the
location of one of the tile's sides e 2 F(PI(a)). If the edge (a; e) is external then it
lies on some patch-side I(p;e0) and X : (a; e) 7! (e

0

). If the edge is internal then it is

coincident with some other edge (a
0

; e
0

) and N : (a; e) 7! (a
0

; e
0

). Figure 5.8 shows
tiles related by internal and external rules. X and N are formed with respect to
any edge in I as follows:

X = f((a; e); (e0)) j a 2 Tp; (a; e) 2 I(p;e0)g
N = f((a; e); (a0; e0)) j a; a0 2 Tp; Ap : (a; e) 7! (a

0

; e
0

)g

e
a a'

e'

e'

e
a

Figure 5.8: An external (left) and internal (right) edge de
ation rule. Moves leaving
the tile a by its side e are shown with arrows. An external move also leaves the
in
ation patch by its patch-side e0, while an internal move enters another tile a0 by
its side e0.

In
ation Adjacency Rules The backwards edge in
ation rules , B, involve a
second in
ation decoration Ip0 joined to Ip along some patch-side. Because of the
way in which we will be using B later, we let a� 2 TI be any tile with prototile
type p0 and e� 2 F(p0) be a facet where I(p0;e�) is the edge of Ip0 along which the

joining occurs. If (a; e), an edge in Ip is coincident with the edge (a
0

; e
0

) 2 I(p0;e�)

then B : (a; e; a�; e�) 7! (a
0

; e
0

). For a picture of tiles related by a backwards rule,
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see Figure 5.9. The mapping is de�ned over all (a; e; a�; e�) as follows:

B = f((a; e; a�; e�); (a0; e0)) j a 2 Tp; S = I(p;X(a;e));

S0 = I(PI(a�);e�);MSS0 : (a; e) 7! (a
0

; e
0

)g

a*
e

a

a'

e'

e*

Figure 5.9: A backwards edge in
ation rule. When the in
ation patch containing
tile a borders the side e� of an in
ation patch a�, side e of tile a is coincident with
side e0 of tile a0.

The Adjacency Algorithm The address of a tile gives its location within in-
creasingly large patches of the form INFl(p). If a tile is located on the boundary of
the �rst n of these patches then exiting the tile by the side that lies on the boundary
of INFn(p) also exits the �rst n in
ation patches. This move does not leave the patch
INFn+1(p) and all digits after the �rst n would be unchanged. The move would, in
turn, enter n new, successively smaller subpatches of INFn+1(p) that determine the
address of the move's destination.

Given the address A of a tile t and one of its edges e1, the address Asym0 of
the tile adjacent to t along e1 can be found by an algorithm that uses external rules
to scan from left to right across digits of A until an internal rule is encountered.
Then, the algorithm scans back from right to left while using backwards rules to
�ll in the digits of Asym0 that di�er from Asym. Each step of this process involves
a �xed-size table lookup and the algorithm is O(jA0j) in the worst case. We use a
left-facing arrow ( ) to indicate assignment to variables.
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A0  A

d 1

while (ed+1) X(ad; ed)

d d+ 1

(a
0

d; e
0

d) N(ad; ed)

while d > 1

(a
0

d�1; e
0

d�1) B(ad�1; ed�1; a
0

d; e
0

d)

d d� 1

We have assumed above that d never becomes larger than jAj. In fact, this will
not be true whenever a move leaves the extent of A. In practice, whenever ad is
accessed but has not been de�ned then the algorithm asks the user to provide an
additional digit that it will use to extend A. This digit de�nes the structure of the
area beyond the extent of A. In this way, the algorithm can be used to travel along
a path of adjacent tiles in a tiling corresponding to an arbitrary index sequence.4

Because a move may extend an address, the algorithm's e�ciency is O(jA0j) rather
than O(jAj). The system only stores enough digits to represent a current in
ated
patch that contains every previously visited tile and whenever a tour ventures out of
this region the user must choose a new patch at a higher level of in
ation to locate
the current patch within.

4Note that not all tilings admitted by the protoset can be generated by in
ation of a single
tile according to an index sequence. If a tiling contains a line of symmetry then moves that cross
this line result in in�nite extension of the address and nontermination of the algorithm. Also, if
local isomorphism does not hold for the protoset then some tilings cannot be formed by in
ation
of a single tile. Section 6.1 re�nes the algorithm for addressing tiles within in
ations of a vertex
con�guration rather than a single tile in order to eliminate these problems.



Chapter 6

Care and Feeding: Additional

Re�nements

This section presents problems, extensions, and other details we fell it is important
to mention concerning our exploration data structure. In order to use our technique,
a user must �rst provide a protoset speci�cation, an in
ation speci�cation, and a
method for generating additional digits when an address must be extended.1 Once
this information is provided, if the user chooses the address of some tile and one
of its sides then a data structure can �nd the address and side of the adjacent tile.
However, if the user has chosen the edge of a tile that lies on a line of symmetry
then the algorithm presented in Section 5.3.1 will not terminate. Recognizing these
situations require additional analysis that we describe in Section 6.1. Users may also
want more information about tiles than their adjacencies. Physicists and mathe-
maticians are often interested in classifying the local con�gurations of tiles that can
occur in a tiling and we discuss this concept in Section 6.2. Section 6.3 provides a
method for determining the orientation of a tile. These concepts suggest potential
avenues for future research.

1A user could provide the index sequence by giving a repeating pattern that forms the in�nite
address of the tiling to be explored. Alternatively, whenever the result of a user's request for an
adjacency results in a longer address the system could ask the user to provide additional digits to
use for extending the address. Note that these extensions must be appropriate. According to the
de�nition of an address, only certain digits may follow others.

68
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6.1 Symmetry and In�nite Crossings

In Figure 6.1 an in
ation patch contains an external tile of its own prototype.
Furthermore, both the tile and the in
ation patch have the same orientation. If we
attempt to determine the adjacency of an edge of the tile that lies on the boundary
of the in
ation patch using the adjacency algorithm of section Section 5.3.1, the
algorithm will encounter in in�nite sequence of external moves. Whenever the edge
of a tile lies on the boundary of the in
ation patch extending the tile at every level
of in
ation, we say the edge is an in�nite crossing .

a

a'

a*

e

e'

e*

e

Figure 6.1: An in�nite crossing results in nontermination of the adjacency algo-
rithm. (a) The in
ation patch a� contains an external tile a of the same type and
orientation. If addresses are extended in such a way that this relationship occurs
at every level of in
ation then no in
ation patch contains both a and its neighbor
a0. The edge e of a that lies on the patch-side e� of a� is an in�nite crossing and
the adjacency algorithm will never reach an external rule for this edge. e lies on a
patch-side of every in
ation of a, or the ray e1.

6.1.1 Seams

If a tiling contains a line of symmetry then the edges along this line are all in�nite
crossings.2 Symmetrical tilings cannot be formed by in
ation of a single tile and

2This is true provided no prototiles are perfectly symmetrical. If a tile crosses a line of sym-
metry then it must be symmetrical along this line. Furthermore, all in
ations of the tile would
be symmetrical as well. Such a protoset can be modi�ed by cutting in half all prototiles that are
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thus it is no surprise that our data structure has di�culty exploring them. If an
edge is an in�nite crossing, we know that an in�nitely large section of edges are also
in�nite crossings. In Figure 6.1, a is identi�ed as an in�nite crossing because it is
of the same type as the in
ation patches. However, every edge along e1 is also an
in�nite crossing since after some number of in
ations the in
ation patches of any
tile along e1 are identical to in
ation patches of a. We call such a ray of in�nite
crossings a seam. In three dimensions, a seam is topologically equivalent to a planar
section with in�nite area. Seams are in�nitely long in one or both directions and
are not necessarily straight.

In two dimensions, extending tiles may generate no seams, one linear seam, or
two ray-like seams, as shown in Figure 6.2. Extensions in three dimensions may
have no seams, one planar seam, two seams that are half-planes, or at least 3 fans
bounded by two rays emanating from a point. Figure 6.3 shows in
ations that would
generate seams of these types and the in�nitely extending tiles that are the limit of
these in
ations. Since the tilings we consider can be de
ated and the topology of
seams is preserved under in
ation, we can see that all seams must meet at least a
point. Figure 6.4 is a hypothetical two dimensional tiling with seams that do not
meet at a point, and it can be seen that this structure is inconsistent with in
ation.
Thankfully, all tilings can be generated by in
ation of a single tile, two adjacent
tiles, an edge con�guration, or a vertex con�guration, as shown in Figure 6.5. Any
of these shapes can be represented as a patch and we call such patches con�gurations .

6.1.2 Addresses

It is not di�cult to add additional information to our addressing system to allow
the representation of tilings containing seams. An additional initial digit is added
to addresses that identi�es one section of a con�guration. Instead of a tile in one of
the in
ation patches, the �rst digit is now a tile in a patch that is the con�guration
we wish to explore. The �rst digit of a tile's address narrows its location in one
of these sections and later digits pinpoint its location extended from that section.
This corresponds to in
ation of an external tile rather that an internal tile in the
manner of Theorem 1. The limit of such an in
ation is not space, but a group
of these in
ations can be placed together at a point in the manner of a vertex
con�guration in order to �ll space. The �rst digit of an address selects the location
of a tile in one of these large regions of the tiling and later bits identify the tile's
position within that region in the same way as an ordinary address. The prototype
of the con�guration section identi�ed by the �rst digit must be the same as the

symmetrical in this way, forming left and right-handed prototiles as Robinson's triangles are for
Penrose's kites and darts and Danzer tiles are for the octahedra they form.
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NO SEAMS

LINEAR

RAYS

Figure 6.2: Classi�cation of seams in two dimensions. Every tile is located within
some other tile at the previous level of in
ation. The pattern of tile within tile can
grow in the three ways shown above. If an edge of the small shaded shape lies in the
middle of the same side of the larger shape then a half-plane is grown with a linear
seam at the boundary. If the small shaded shape is at a corner than a fan bounded
by two ray seams is formed. Otherwise, continued extension tiles the plane and no
seams are created.
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NONE PLANAR

2 HALF-PLANAR MULTIPLE FANS

Figure 6.3: Classi�cation of seams in three dimensions. In each section, a small
shaded pyramid extends to the larger pyramid. Arrows indicate the growth of
seams. Note that the shaded pyramid for the upper-left cannot be seen because it
is obscured within the larger pyramid. Also, in the lower right the third fan seam
is obscured.
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Figure 6.4: All seams must meet at a point. 3 fans are bounded by the 6 seams
shown in this hypothetical tiling, dividing the plane into four sections. However,
the triangle in the middle section is awkward. It remains a �xed size at all levels of
in
ation. Under in
ation, tiles contain balls with increasingly large radii and one
of these will contain one of the three points from which the seams emanate. Such a
tile is inconsistent with the de�nition of a seam so this situation is impossible.

prototype of the second digit and the system for extending addresses must extend
them in a manner consistent with this con�guration. Not all possible extensions of
tiles grow in such a way that they can �t with other extended tiles around a vertex
con�guration. Whenever sections of the con�guration are extended they must be
extended in such a way that the in�nite crossings making up each of the seams
(initially the internal edges of the con�guration) map to individual planar sections
of the extended in
ation patches. The extent of an address of length n is n�1 levels
of in
ation of the con�guration being explored.

A tile's �rst digit will change only when an in�nite crossing is encountered.
Leaving aside for a moment the problem of recognizing this situation, we can extend
the adjacency algorithm (see Section 5.3.1) for addresses with con�gurations. We
assume that the function E : (a1; a2; : : : ; an) 7! an+1 is used to extend any address
by one digit. For addresses of at least two digits, extension occurs in the same
way as when addressing tiles within tilings without seams as in Section 5.3.1. An
extension of a tile in the con�guration is one of the in
ation patches that contains
a tile of its prototype. Many such extensions may be possible, but the extension
function will be chosen so that these extensions are consistent with the seams of the
tiling. The con�guration tile must be an exterior tile of the in
ation patch and the
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TILEFACE

EDGE VERTEX

Figure 6.5: Kinds of con�guration. A point in a tiling can be contained by tiles
in four ways. The point can lie within a tile, on a face between two tiles, at an
edge between multiple tiles, or at the corner of many tiles. We call an arrangement
of tiles in this manner a con�guration. Only one tile of the vertex con�guration
is shown. Imagine that such shapes radiate from the center of the globe to every
section of its surface. Usually we do not include the trivial case of a single tile when
we speak of a con�guration.
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extension patches for all the tiles of the con�guration must �t together so that the
con�guration tiles within them are arranged in the same way as the con�guration, as
seen in �gure Figure 6.6. E must be de�ned so that extending a single digit address
(a1) yields the location of the con�guration tile (a1) within its extension patch. This
property holds for addresses with two or more digits as well. An address with n

digits represents the location of a tile within a patch of the form In� 1p and the
�rst digit represents a location within the con�guration. The n-th extension of the
single digit addresses for each tile of the con�guration can be �t together around a
point and the con�guration will lie around the point in this formation. As can be
seen in Figure 6.6, the tiling formed by an in�nite series of extensions will have a
seam for each adjacency in the con�guration.

Figure 6.6: Consistent extension of the sections of a vertex con�guration. Each
section must be extended so that it remains edge-to-edge with its neighbors. In
general, sections with the same angle (or more complicated congruent shapes) can
be swapped at various levels of in
ation.
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6.1.3 Adjacency

Determining adjacencies is now more intricate than in Section 5.3.1. We �rst in-
troduce a set C = f(Ai; ei; Ei) j 1� i� ng. Here Ai = (a1; a2; : : : ; an) is the digits
of an address representing a tile t in an in
ation patch with an extent of the form
INFn�1(p). ei is an edge of t, and Ei is the function used to extend addresses. C is
de�ned over all addresses, edges, and consistent extension functions. Clearly this
in�nitely large set cannot be algorithmically represented, but we will postulate its
existence in order re�ne the adjacency algorithm for use with con�gurations. If A is
an address, G = (T;P ;A) is its con�guration, and e2

3 is the side of the tile whose
neighbor we wish to �nd, then A0 = (a1; a2; : : : ; an0) is this neighbor along its side
e
0

2.

if not (A; e1; E) 2 C then
let (a

0

2; a
0

3; : : : ; a
0

n0) and e
0

2 be the adjacency of
(a2; a3; : : : ; an) and e2 computed by the standard
adjacency algorithm of Section 5.3.1

otherwise:

if a�2 = E((a1))
e3 = X(a2; e2)

(a�2; e1) 2 I(PI(a3);e3)

A((a1; e1)) = (a
0

1; e
0

1)

d 2

while d � jAj
a
0

d  E(a
0

1; a
0

2; : : : ; a
0

d�1)

e
0

d  X(a
0

d�1; e
0

d�1)

ed  X(ad�1; ed�1)
d d+ 1

while d > 2

(a
0

d�1; e
0

d�1) B(ad�1; ed�1; a
0

d; e
0

d)

d d� 1

3We call the side e2 instead of e1 because we no longer move from the �rst digit except when
an in�nite crossing is encountered and in this case, we must calculate the side crossed for the �rst
digit using the algorithm.
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If A, e2 is an in�nite crossing, then this algorithm works in three steps. First,
the algorithm must identify the e�ect of the in�nite crossing as a move between
regions of the con�guration|from (a1; e1) to (a

0

1; e
0

1). a�2, the extension of (a1) is
the location of a1 within the same in
ation patch that a2 is located within, and this
relationship is used to �nd (a

0

1; e
0

1). Second, we �nd the extension of a
0

1 that matches
with ajAj and the adjacent sides ejAj and e

0

jAj. Third, we can use the same process

of backwards in
ation as in Section 5.3.1 to �ll in the correct digits of jA0j. Here,
we stop at d > 2 rather than d > 1 because the digit a1 was already calculated
specially in the �rst step. Figure 6.7 illustrates these three steps spatially. The
e�ciency of this algorithm is linear in terms of the length of A0 and in the case of
in�nite crossings, jAj = jA0j. The trick, however, is to �nd the set C.

6.1.4 Identifying Symmetry

Now we wish to categorize the ways in which addresses can be extended to produce
in�nite crossings. We will do this by forming a directed graph called an edge in
ation
roadmap. Vertices of this graph are all facets of all prototiles, F(P ). For each
external rule ((a; e); (e

0

)), we place an arc from e to e
0

, and the arc is labeled with
a.

Any cycle in this graph is the address of an in�nite crossing. Say (p1; e1)
a1!

(p2; e2)
a2! : : :

an�1! (pn; en)
an! (p1; e1) is a cycle. Then if the address a1 is extended

along the series fai j ai = aimodn; i � 2g, a move from a1 by side e1 will correspond
to an in�nite series of external rules ((ai; eimodn); (ai+1)) that form a seam.

In fact, any address with a su�x that is an in�nite path through the graph
produces an in�nite crossing and some paths would never cycle. In general, it
is impossible to determine whether an address and side are an in�nite crossing
without encoding an analysis of the extension function in order to analyze whether
an in�nite series of extensions is a path in the graph. If such a series contains
in�nitely many internal rules then the series is not an in�nite crossing. This problem
is the determination of whether an in�nite string is in the language accepted by a
�nite automaton.

If the extension function contains a repeating cycle then the problem can be
viewed as parsing for a cycle in the graph. If there are n nodes in the edge in
ation
roadmap, we make n copies of the roadmap. In each graph, a di�erent node is chosen
as a start and stop state. Each graph is a deterministic �nite state machine that
accepts cycles beginning at its start state and each state has one outgoing transition
for every address digit that is an external rule from that state. A nondeterministic
�nite automaton can then be created with a start state that has an empty transition
to the start state of each copy of the graph. This automaton parses the repeating
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STEP 1

STEP 2 STEP 3

CONFIGURATION

a1/a2*

a2

an

en

e2

e1

a1
e1

a'1

e'n

an
e1

a'1 e'n

e'n

a1

Figure 6.7: A move to a di�erent region of symmetry. The algorithm takes place
in three steps. Moving from a2 by e2 exits the whole section an by en. In step 1,
we �gure out the side of a1 that also leaves by en. In step 2, we �nd the adjacent
region in the symmetry con�guration and set the �rst digit of the new address (a

0

1).
Then we extend it to �nd the side e

0

n that matches with en. Then in step 3 we use
backwards rules to �ll in the rest of A0.
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unit of an address and accepts it if the address corresponds to an in�nite crossing.
If the automaton is converted to a deterministic �nite state machine then it will
have a state for every way of chosing a node in each copy of the roadmap, or nn

states where n is the number of facets in the protoset. Many of these combinations
may be unreachable, but an explosion of states makes this approach practical only
for small protosets.

The edge in
ation roadmap could be used to automatically categorize the ar-
rangements of seams that can occur in tilings formed from a protoset speci�cation
and in
ation speci�cation. An in�nite path through the roadmap is an index se-
quence for an in�nite, but incomplete section of space. Tilings formed frommultiple
pieces formed in this way have a seam for each adjacency in the con�guration de-
scribing the way in which they are connected.

6.2 Con�gurations

A con�guration is a group of tiles that share a point and completely surround it.
The con�gurations of a protoset are closely related to local isomorphism and to the
seams that can occur. An automated technique for generating all the possible vertex
con�gurations for a set of prototiles would eliminate the painstaking analysis that
is required to calculate combinations of tiles by hand. It is possible to exhaustively
catalog all possible con�gurations of a set of prototiles given their geometry and
matching rules by trying all possible ways of attaching their edges together. Each tile
can attach to others in only a �nite number of ways and depending on how sharply
angled the tiles are, only a certain number of tiles can be �t around a point. Baake
et al.[BBAK+94] outline such a technique that they used to generate all possible
vertex con�gurations for three-dimensional tilings with icosahedral symmetry made
from an oblate and prolate rhombohedra. Trying all possible ways to match tiles
together will, in general, produce some degenerate vertex con�gurations that are
admitted by the matching rules but cannot be extended to tile the plane. We
will describe a technique that uses|you guessed it|an in
ation speci�cation to
discover all con�gurations that actually occur in tilings generated by in
ation. We
will search for all types of con�gurations (vertex, edge, and adjacency) as depicted
by Figure 6.3. Edge and adjacency con�gurations can be thought of as partial vertex
con�gurations|tiles that share more than a single point.

We call the set of all con�gurations an atlas . We begin by assuming that local
isomorphism holds for the protoset in question. Thus we can say that all con�gu-
rations occur within some level of in
ation of a single tile. We also assume that a
method can be developed for �nding the con�gurations within a patch. This infor-
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mation cannot be recovered from a dual graph alone because this structure does not
reveal how tiles are related to each other except that they are adjacent by certain
sides. Information could be maintained that would identify the vertices that coin-
cide when two tiles are adjacent.4 The algorithm could then identify all subpatches
that share a vertex. Unless such a vertex lies on the boundary of the patch, then the
maximal subpatch of tiles surrounding it is a vertex con�guration. If two subpatches
are structurally equivalent then they are the same con�guration.

In the �rst step of our technique we examine all the in
ation patches and add all
con�gurations within them to the atlas. If the in
ation patches are so small that they
contain no vertex con�gurations then we in
ate them until they do. In Theorem 1
we saw that in
ation of one tile produced a tiling of the plane. Because of local
isomorphism, we know that every con�guration exists within some in
ation of that
tile. By examining enough in
ations of the tile, we can �nd all these con�gurations.

When looking for con�gurations inside in
ations of a patch G, it is important
to realize that new con�gurations cannot occur within tiles of the patch, but rather
only along the edges where patch-sides are attached together. We see that we only
have to check the new adjacencies formed by an in
ation for new con�gurations.
Furthermore, there is no need to keep track of an entire patch for multiple levels of
in
ation. Any con�guration that has not yet been discovered must lurk inside an
in
ation of one of the con�gurations that was just discovered on the current step. If
a vertex con�guration has been expanded previously then all vertex con�gurations
within it have already been found. Our algorithm proceeds to search all in
ations
of the initial patches by expanding the sections in which tiles are attached together
in new ways. At each step the algorithm in
ates every con�guration discovered
in the previous step and looks for new con�gurations along the patch-sides of the
in
ation patches that are placed together to form this in
ation. Since there are a
�nite number of con�gurations, eventually no new con�gurations will be formed.
When this occurs the atlas is complete.

An atlas can be used to form the most restrictive possible set of matching rules for
a set of prototiles. Every adjacency in every vertex con�guration must be allowed by
the matching rules and if all these adjacencies are allowed then any tiling admitted
by the prototiles can be formed.

The con�gurations that are generated can also be used to analyze symmetries
that are possible with the protoset. Any of the con�gurations can be in
ated. If we
observe a point that is surrounded by a con�guration and in
ate the con�guration

4There are a �nite number of such vertices. Spatially, edges are open discs of points shared by
exactly two tiles. Open arcs lie on the closure of two or more edges, and vertices are single points
that lie on the closure of more than two arcs. A tile that had an in�nite number of vertices would
have an in�nite number of edges.
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then a new con�guration will be formed around the point. The tiles surrounding
the point will become more and more pointy at increasing levels of in
ation. We
could form a graph to indicate which con�gurations subdivide to which others.
Since there is only one way to in
ate a tiling, there is one arc out of each node
of the graph. These levels of in
ation will eventually cycle among some set of
con�gurations. Every sequence of in
ations of con�gurations, when reversed, is
a system for extending patches of tiles from each section of the con�guration in
a consistent manner to form a tiling containing seams for every adjacency of the
con�guration.

6.3 Orientation

To this point, we have been concerned only with capturing the dual graphs of tilings
that we explore, but it is possible to use addresses to include information about the
directions in which tiles are oriented as well. This would allow a spatial reconstruc-
tion of any local region and would give a sense of direction to the exploration. For
example, a user may wish to travel in whatever direction is closest to north.

Each tile is oriented as follows. Place all prototiles is space arbitrarily. These
are the reference prototile orientations. Actual orientations of tiles are given as
rotations in three dimensions from the tiles. If t is of type p, R is such a rotation,
and R(p) is a translation and scaling of t then we say that t has orientation R.

Each in
ation patch is oriented in the same way as the reference position of its
prototype and we calculate the orientation of each tile of an in
ation patch. For
any t in some in
ation patch Ip, let Rt be the orientation of t within its reference
patch. Then given any address (a1; a2; : : : ; an) the addressed tile's orientation is
Ra1 �Ra2 � : : :�Ran where � indicates composition of the rotations.

Taking all the Rai from the in
ation patches, if the closure of these rotations is
�nite, then this is a �nite set of possible orientations and we can represent orienta-
tions discretely. Careful positioning of the reference positions will sometimes reduce
the number of di�erent possible orientations. Ideally, there is a �nite number of
orientations and we can compute orientations relative to adjacent tiles as we did for
Robinson's tiles (see Figure 2.14). However, it may be that tiles are oriented relative
to their in
ations at an irrational angle and that a continuous range of orientations
must be used.

We can incorporate more spatial information into our data structure by gen-
eralizing our transformations to include translation and scale as well. The scaling
must always be the uniform expansion factor of the tiles (this was � for Robinson's
triangles). Then it is possible to pinpoint the precise location and shape of any
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tile by composing the transformations associated with its digits and applying this
transformation to the reference prototile for the �rst digit of the address. In this
context, tilings can be seen as the �nite application of an iterated function system.
This addressing system could be used to form ray-traced images of tilings without
building any models larger than the reference prototiles. Hart and DeFanti[HD91]
describe such a system for rendering fractals generated by iterated function systems.
Computing the intensity of a pixel requires time proportional to the number of levels
of in
ation of the tile being drawn. Rather than constructing and transforming each
tile in the model, the inverse transformations are applied to the rays themselves as
they intersect a tile at each level of the inheritance hierarchy. This method would
be well-suited for generating images of aperiodic tilings because in this case rays
only must to traverse a structure of �nite depth, normals are well-de�ned, and no
tiles intersect.



Chapter 7

Conclusion

The bulk of our work has concerned the adaptation of index sequences for use as
an addressing system. The inspiration for this approach comes from a discussion
of index sequences for Robinson's triangles by Grunbaum and Shephard[GS87].1 In
developing our data structure, we faced four major problems:

1. properties: In Chapter 4 we developed careful spatial de�nitions for our tiling
terminology and laid a foundation for the correspondence between tilings as
dual graphs and as sets of points. In
ation, aperiodicity, and local isomor-
phism are well-studied topics in the �eld of tilings. We investigated these
properties using the same model of in
ation as is used by our data structure.
This allowed us to determine the properties of a protoset that can be used to
prove that it tiles the plane aperiodically.

2. speci�cation: We developed a notation for representing the dual graph of
a tiling and in
ation rules for growing tilings. These notations allowed us to
precisely de�ne the construction of in
ated tilings and the address of a tile
within an in
ated patch. These principles can be translated almost directly
to a mechanical implementation of our data structure.

3. adjacency: The adjacency algorithm enabled us to use the space of addresses
as if were a graph structure. Each move from tile to tile in this graph requires
time proportional to the length of the addresses and addresses have logarith-
mic length in the number of tiles of the represented patch. An adjacency is
computed by examining relationships between consecutive pairs of digits that
represent pairs of tiles at consecutive levels of in
ation.

1Grunbaum and Shephard report that Lunnon studied the use of index sequences for generating
images of tilings, but Lunnon never published these results.
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4. symmetry: Unless seams are taken into account, our data structure can only
explore one region of a symmetrical tiling and the adjacency algorithm fails to
terminate if exploration crosses a seam. We were able to recognize and handle
this case for the Robinson triangles. Our approach for the general case was
more di�cult and required the study of roadmaps and con�gurations. Some
aspects of this theory would bene�t frommore investigation and formalization.

We believe that our data structure is an e�cient mechanism for exploring very
large spaces of aperiodic tilings admitted by in
ation. Except for addresses them-
selves, no storage of the structure of a tiling needs to be maintained beyond the �xed
tables of rules that are generated in advance of the exploration of any particular
class of tiling. Our system uses addresses with lengths that grow in the same order
of magnitude as the minimum number of bits required to identify tiles in a patch of
the size that they represent. Moving to adjacent tiles requires time proportional to
the number of bits in an address. In neither space nor time is the constant in front
of these orders of magnitude particularly large. Three features of our data structure
make it a particularly desirable mechanism for touring aperiodic tilings:

1. general: Any tilings generated by unique in
ation by composition of tiles can
be represented using our system. Furthermore, any region within any tiling of
a given class can be explored.2

2. discrete: Our representation is not an approximation, but a construction that
precisely models regions within a tiling. Methods dependent on projection are
susceptible to rounding errors that can result in 
aws in the tiling.3

3. expandable: During the course of exploration, addresses grow longer as
needed in order to encompass travel further from the center of exploration.
As far as the user is concerned, the system represents an in�nite tiling.

7.1 Future Work

We brie
y mention here what we believe are interesting questions that future re-
search might pursue.

2Note that symmetric tilings require extra e�ort to represent properly.
3Bell et al[BDHJ83] have studied the use of various regular tilings in a hierarchical address-

ing system for processing image data. They �nd it desirable to avoid 
oating point calculations.
QuasiTiler[Dur94] sometimes produces tilings with holes because a point very near a border is
incorrectly placed outside it.
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Theoretical issues:

� What are the relationships among in
ation, unique in
ation, aperiodicity, and
local isomorphism?

� What is the minimum information required to represent a section of a tiling?

E�ciency analysis:

� How many digits must be used to structurally contain any ball of tiles of a
certain radius?

� How many digits are required to represent a random connected patch of tiles?

� On average, how many digits change per move?

Data structure maintenance:

� Formalize algorithms to generate vertex con�gurations and symmetry types
for an arbitrary in
ation speci�cation.

� Implement a system to create a data structure for exploring tilings generated
by any given in
ation speci�cation.

� Attempt to optimize other operations for traveling within a tiling. For ex-
ample, �nd the shortest path between two points (in number of moves). The
shortest path does not necessarily correspond to the geometric direction of the
destination.

� Generate data structures for a wide variety of protosets and assess the suitabil-
ity of the data structure for representing structures of interest to physicists.

� EXPLORE!



Appendix A

An index sequence formed in

in
ations of Robinson's triangles
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Figure A.1: Formation of an index sequence. The 1st digit is \0".
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Figure A.2: Formation of an index sequence. The 2nd digit is \0".
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Figure A.3: Formation of an index sequence. The 3rd digit is \0".
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Figure A.4: Formation of an index sequence. The 4th digit is \1".
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Figure A.5: Formation of an index sequence. The 5th digit is \0".
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Figure A.6: Formation of an index sequence. The 6th digit is \1".
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Figure A.7: Formation of an index sequence. The 7th digit is \0".
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Figure A.8: Formation of an index sequence. The 8th digit is \1".
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Figure A.9: Formation of an index sequence. The 9th digit is \0".
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X

Figure A.10: The 10th digit is \1". The index sequence is 0001010101. . .
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Appendix B

In
ation Patches and In
ation

of Danzer's Tetrahedra
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Figure B.1: In
ation patch of an A-tile.

Figure B.2: In
ation patch of a B-tile.
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Figure B.3: In
ation patch of a C-tile.

Figure B.4: In
ation patch of a K-tile.
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Figure B.5: A K-tile at in
ation level 3. (Level 1 is the tile itself and level 2 is its
in
ation patch.)

Figure B.6: A K-tile at in
ation level 4.
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Figure B.7: A K-tile at in
ation level 5.

Figure B.8: A K-tile at in
ation level 6.
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Figure B.9: A K-tile at in
ation level 7.
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