
Visualizing Large Communication Graphs

by
Steven S. Rubin

A Thesis
Submitted in partial fulfillment of

the requirements for the Degree of Bachelor of Arts with Honors
in Computer Science

WILLIAMS COLLEGE
Williamstown, Massachusetts

May 22, 2011

2

Abstract

Communication graphs induced by parallel programs can be overwhelming in size,
but are highly structured. For example, trees, grids, and n-cubes are common. In
order to understand program behavior, we seek informative graph visualizations that
reduce visual complexity. We leverage the concept of ellipses (“. . . ”), an intuitive
symbol that abstracts redundant structure.

Using graph grammars coupled with specific procedural methods, we create large,
structured graphs of parallel program communication. These graphs that have prac-
tical realizations in two dimensions can be visually simplified using an algorithm that
finds contextual balls around important nodes. Graphs that are harder to visualize in
two-space are more di�cult to simplify. This work presents metrics and layout tech-
niques that may aid in the visualization of such graphs. We evaluate these metrics
by developing an ideal for want to see in abstracted visualizations of large, structured
graphs. The metrics and layout techniques are implemented in Gephi, an open-source
large graph visualization tool.

Our large graph visualizations are important tools for helping programmers under-
stand interprocess communications of their parallel programs. This work establishes
some prototypes for visualization that in the future may harnessed in the design of
e↵ective parallel programming environments.

Acknowledgements

I’d like to thank Duane, for coming up with such a fundamentally interesting topic,
my parents, for raising me to appreciate the value of a good thought, and my friends,
for preventing me from getting completely buried in the thesis workload.

Visualizing Large Communication
Graphs

1 Introduction 4
1.1 A shift to parallelism . 4
1.2 Working toward a solution for the visualization problem 5
1.3 First steps . 6

2 Background 8
2.1 Graph layout . 8

2.1.1 Small graphs . 8
2.1.2 Large graphs . 8

2.2 Debugging . 13
2.2.1 The ATEMPT debugger . 13
2.2.2 The DEPICT topological debugger 14
2.2.3 Topological debugging by specification 15

2.3 Graphical pattern recognition and abstraction 15

3 Parallel programs 17
3.1 Parallel algorithm communication structures 17

3.1.1 Concurrency seen in communication structure 17
3.1.2 The figures used are natural 18

3.2 Algorithm design . 18
3.2.1 A problem of scale . 18
3.2.2 Natural growth and a small viewing window 18
3.2.3 Ellipses in figures . 19

1

VISUALIZING LARGE COMMUNICATION GRAPHS 2

3.3 Visualization tools . 19

4 Growing graphs 26
4.1 String grammars . 26
4.2 Graph grammars . 27

4.2.1 Partitioning: controlling duplicate inheritance 29
4.2.2 Junctions . 30
4.2.3 Parallel growth of node and edge attributes 31
4.2.4 Further annotations . 31

4.3 Procedural methods . 31
4.3.1 Cyclification . 32
4.3.2 Vectorization with permutation functions 33
4.3.3 Grids and meshes . 35
4.3.4 Compositions . 36

4.4 Gephi . 36

5 Theoretical foundations 39
5.1 Fisheye views . 39

5.1.1 Applicability to large graph visualization 40
5.2 Application: Route maps . 42
5.3 Feature classification . 43

5.3.1 Non-uniqueness of classifications 45

6 Large graph layout 47
6.1 Trees . 47

6.1.1 Building a tree visualization 48
6.1.2 Multi-focal extensions . 50
6.1.3 A generalization for finding the context around a node 51
6.1.4 Constructing the sets . 52
6.1.5 Adding ellipses . 55

6.2 Grids . 55
6.2.1 Building a grid visualization 56
6.2.2 Constructing the sets . 56

6.3 A generalization . 57

VISUALIZING LARGE COMMUNICATION GRAPHS 3

7 Large graph layout without boundary 59
7.1 Imposing boundaries on the unbounded 61
7.2 A property-based layout algorithm 61
7.3 Useful node metrics . 62

7.3.1 Single-source shortest path . 63
7.3.2 Edit distance . 63
7.3.3 First bit set . 64
7.3.4 Strahler numbers . 65
7.3.5 The “symmetry from boundary” metric 66
7.3.6 Combining metrics . 67

7.4 Evaluation . 69
7.4.1 Metrics . 69
7.4.2 Di↵erent kinds of graphs . 73

8 Conclusion 76
8.1 Future work . 77

8.1.1 Parallel debuggers . 77
8.1.2 Identifying graph topologies 78

A Large figures 80

Chapter 1

Introduction

1.1 A shift to parallelism

As Moore’s Law slows and CPU designers shift focus to optimizing multi-core pro-
cessors, programmers will be forced to adopt the paradigm of parallelism. When
considering parallel programming and parallel algorithms, it becomes clear that cer-
tain symmetries in communication arise. For example, in an algorithm that defines
an operation to be performed in parallel on data, a master-to-many-slaves tree com-
munication structure is formed. If the slave nodes similarly spawned processes in
parallel, the resulting nodes would further add to the tree-like communication struc-
ture. Other graph-theoretic structures tend to emerge from parallel algorithms as
well [41]. For example, simulation of a heat equation might induce a communication
structure whose graph is a grid-like mesh with bidirectional edges. Another highly
practical graph structure is the hypercube [43].

Understanding the structure of communication in a parallel program is vital to
debugging. Small trees, grids, and hypercubes can be visualized without any loss
of detail. However, in massively parallel systems, the communication structures of
parallel programs quickly become ine�cient to visualize in full detail. A natural step
toward solving this problem is to find methods of abstracting the communication
structure’s visualization.

4

CHAPTER 1. INTRODUCTION 5

1.2 Working toward a solution for the visualiza-
tion problem

Past research (clustering, focus+context [23, 31, 40]) has addressed three primary
methods of reducing visual complexity: ghosting, hiding, and grouping. Ghosting
deemphasizes nodes, hiding conceals nodes, and grouping merges nodes together into
pseudo-nodes. These techniques, paired with a function to calculate a node metric
to cluster similar nodes together, can lead to aesthetically pleasing visualizations of
otherwise unwieldy graphs [17, 44].

Current visualization techniques of general graphs do not take into account the
symmetries that are specific to parallel algorithm design [8, 21]. The parallel pro-
grammer wants to do something in the small which will eventually grow to fit a given
machine. Thus, as parallel programs are grown recursively and symmetrically, we be-
lieve that the ideal visualizations of the communication graphs would leverage these
features. If the communication between process 0 and processes {1 . . . } are all the
same by algorithmic definition, then showing all of these communications in our vi-
sualization might be superfluous. Thus a natural goal for these visualizations would
be to show only a limited number of these repeated substructures. A programmer
who is using parallel algorithms should have an intuition for the desired interpro-
cess communication structure of a program. Therefore we have incentive to give the
programmer natural tools to visualize and debug the resulting communication graph.

While clustering may seem like a natural fit for this problem, it will remove the
sense of repetition that, while redundant in full detail, is critical to understanding the
symmetry inherent in the induced communication graph. Luckily, we already have an
indicator for repetition: the ellipsis (. . .). Take, for example, the range 1, 2, 4, . . . , 2n.
The ellipsis here indicates that a pattern is present, and while the numbers excluded
by the ellipsis are not identical, the pattern is easy to deduce. Adding ellipses to
visualizations fits our intuition of the induced communication structures of parallel
programs.

Figure 1.1 shows a hypothetical communication structure, where each node rep-
resents a process. The ellipses play an important intuitive role in this graph which
could contain several thousand nodes. In parallel programming, the number of pro-
cesses will likely be a function of the number of available processors, but the gist of
the computation can be seen in a select group of nodes. By adding ellipses, we strive

CHAPTER 1. INTRODUCTION 6

...

...

...

...

... ...

...... ...

Figure 1.1: A hypothetical “ellipsized” communication graph

to identify relevant groupings of nodes.
It seems likely that, because we lack an absolute metric of the utility of a visual-

ization, the e↵ectiveness of a communication graph would be intuitively defined, and
not mathematically rigorous. Thus, instead of defining graph reductions in terms of
absolutes, this work will strive to create several simplifying heuristics that interact
in informative ways. Applying a given reduction scheme to a graph will reveal some
information about the inherent nature of the graph or of the relationship between dis-
tinct sections of the graph. Compositions of these simplifications will likely present
details of a given graph with adjustable granularity.

1.3 First steps

This thesis investigates the visualization of large communication structures that result
from massive parallelism. It makes use of graph grammar formalisms and a notion
of abstracted views and layout of graphs. We believe these first steps are important
to building parallel programming environments that make visualization an integral
feature.

Chapter 2 discusses the background of large graph visualization and parallel de-
buggers. Chapter 3 uses the process of parallel program design to set our visualization
goals. In the following chapter, we establish formalisms for growing graphs, which we

CHAPTER 1. INTRODUCTION 7

implement in Java. Chapter 5 provides a more in-depth background on the crucial
concepts of generalized fisheye views and feature classification. The next two chapters
discuss our process of visualizing large graphs, and introduce our key concept of the
contextual ball. Finding these contextual balls around important nodes provides a
rigorous method of deciding which nodes to abstract in any graph that is grown in
a grammar-like manner. In our visualizations, we harness the features and the API
of Gephi, an open-source large graph visualization tool. The final chapter reflects on
our progress and outlines potential future research.

Chapter 2

Background

2.1 Graph layout

Graph drawing and graph layout is a thriving field of computer science, boasting
several focused journals and an annual conference. The explicit goal of graph draw-
ing is to display general graphs in aesthetically pleasing, informative, typically two-
dimensional (though possibly 3-D) representations. Graph drawing’s pivotal question
is thus, “What is the ideal layout aesthetic for the given application?”

2.1.1 Small graphs

“Graph Drawing” [7] by Battista, Eades, Tamassia, and Tollis is the canonical intro-
duction to graph drawing principles and algorithms. Given a su�ciently small graph,
this work is likely to give an e�cient and aesthetically pleasing way of visualizing it.
We will be concerned with graphs are too large for conventional techniques, but we
depend on prior work for the presentation of small graphs.

2.1.2 Large graphs

Drawing large graphs poses a new set of challenges. If applying a standard technique,
the entire graph would be displayed with each feature having equal weight. The re-
sulting image would be obfuscated by the density of information. Instead, researchers
have developed methods of graph visualization that focus on specific features of the

8

CHAPTER 2. BACKGROUND 9

graph while hiding others. The main approach involves clustering and amplifying the
importance of di↵erent features of the graph.

Clustering

If several vertices in a graph seem to exhibit similar behavior in the context of the
graph as a whole, we can abstract away vertices or form an equivalence class with
clustering techniques. The general principle is that we need to partition nodes into
“clusters.” From that point, layout can proceed by letting our clusters be the nodes of
a smaller graph with, one assumes, simpler structure. Clusters a↵ord other options,
as well. For example, if we iteratively apply a clustering technique to a graph, we can
maintain and display a hierarchical clustering [23]. (A similar hierarchical approach
has been used in physics as a scale-independent abstraction mechanism [47].) One
way to find clusters is to define node metrics on a graph, which encode some struc-
tural feature of each vertex. Examples of node metrics include the degree of interest
function and Strahler numbers.

Degree of interest

In many applications, one section of the graph may be more important than the rest.
For example, in a visualization of a file system, the working directory is the most
important feature. Directories that are ancestors and descendants of the working
directory may be visible, while distant relatives may be absent entirely. The intuition
of this example is that of focus+context: part of the graph is in focus (the working
directory) and the visualization provides a context about that focus (some ancestors
and descendants, as well as other important parts of the directory tree). This model
is captured mathematically by fisheye views.

To apply a fisheye view to a graph, we define an a priori interest (API) function
and a distance metric (D) on vertices [17]. API(x) defines how interesting, useful,
or important a vertex is, disregarding any particular focus of the graph. D(x, y) is
a metric measuring logical distance between two vertices. These two functions are
combined by defining the degree of interest (DOI) of a vertex x in a graph with focus
y to be

DOIy(x) = API(x)�D(x, y)

The graph-drawing process can then proceed, using this DOI function as a guide. We

CHAPTER 2. BACKGROUND 10

could, for example, emphasize vertices with high degrees of interest, or hide vertices
with degrees of interest below a threshold. While fisheye views provide a simple
framework for showing focus and context, defining API and D for large graphs is
often not obvious.

Strahler and flow metrics

Originally conceived for use in hydrology, the Strahler number of a node in a tree or
directed acyclic graph is a measure of the branching structure at that node. They
are only used for trees and DAGs because their definition depends on the structure
of the graph being similar to the structure of rivers: in particular, there must be an
obvious notion of flow between predecessor and successor [21, 22]. A formula (there
are many similar definitions) for the Strahler number on a node in a tree is

S(v) = max(S(k1), . . . , S(kp)) +

⇢
p� 1 if all values S(ki) are equal
p� 2 otherwise

where the ki are the p successors of v. The Strahler number on each leaf is defined as
1. A similar formula can be defined for DAGs. The flow metric on a DAG imagines
the graph as a series of pipes and quantifies the amount of flow of a liquid at each
node [22]. Each source node v has M(v) = 1, while for other nodes,

M(v) =
X

j

M(aj)/number of successors of aj

While both the Strahler and flow metrics are practical metrics on directed acyclic
graphs, process communication in parallel programs induces general graphs that lack
strong properties. Regardless, the metrics could still be useful if we find ways to form
restricted views of full graphs as DAGs, trees, or other graphs with simpler structures.

Skeletons

A skeleton of a graph is a subgraph of important vertices and edges. Given a set of
node metrics, we can combine them to form per-node estimates of importance. The
resulting function can be used in combination with some threshold to select a skeleton
for the graph.

CHAPTER 2. BACKGROUND 11

Figure 2.1: Ghosting, hiding, and grouping applied to a skeleton of a tree

Once we have selected our skeleton, and thus identified the most prominent fea-
tures of the graph, we must address the remaining nodes. Common visualization
techniques for these less important nodes are ghosting, hiding, and grouping [23, 31].
If a set of vertices are unimportant, we can hide them from our visualization. Like-
wise, if a set of vertices are of secondary importance, we can ghost, or somehow shrink
or fade this set in our visualization. Finally, we can represent a set of vertices as a
super-node by grouping them together. Figure 2.1 from [23] shows representative
examples of these visualization techniques on trees.

CHAPTER 2. BACKGROUND 12

An issue with these methods of visualization for large graphs is that they depend
heavily on abstracting them as trees and DAGs [8, 21, 22]. In doing so, they do
not take other structural properties of the graph into account. In general, parallel
process communication graphs will contain symmetries, thus an “equivalence class”
can likely be found for each node. We strive to find node metrics and other methods
of visualization that capture this symmetry and repetition. Alternatively, the above
methods can be used on general graphs by first finding a minimum spanning tree
and then applying a tree-specific node metric to it. It has been noted that selecting
thresholds for combining nodes “without some a priori knowledge of the data” is
a challenging problem [40]. Fortunately, the nature of parallel programs gives us a
wealth of knowledge about the structure of process communication graphs.

Graph grammars

Rather than using a node metric to deduce structural properties of graphs, we can
use graph grammars to generate large graphs that have mathematically well-defined
structures. The general principle of graph grammars is that we start with a small
graph and a set of grammars, or rules, that are applied in succession, thereby growing
the graph. Recursively defined graphs have natural links to parallel programming.

Graph rewriting mechanisms have been used to graphically implement parallel
programs [5]. Suppose that at each step of the graph rewriting process, we modify a
metric of each node. By building a large parallel program in this manner, we hope
to obtain a useful node metric for the program’s communication graph. This metric
could then be used, perhaps in a manner described above, to render larger programs
in an understandable way. This is the subject of much of the rest of this work, and
is described in detail in Chapter 4.

2.2 Debugging

As multicore systems have begun to dominate the computing landscape, we have
been challenged to design debuggers for parallel programs. Improvements in the
visualization of large graphs could have a direct impact on the utility of parallel
program debuggers; as programs grow from a few processes to thousands or millions,
we must find reasonable ways to view or abstract the communication within the

CHAPTER 2. BACKGROUND 13

program.
Many parallel program debuggers are post-mortem debuggers, meaning they per-

form analysis on the trace file from a program’s execution. A trace file from a program
using MPI [14] (Message Passing Interface, the most common parallel programming
API specification) contains temporal information about interprocess communication.
The communications in the trace file can be combined to form a process communica-
tion graph.

2.2.1 The ATEMPT debugger

The ATEMPT debugger [33] shows the programmer a visualization of the parallel
program. A trace file is used as input, so all analysis is done post-mortem. Unlike
many parallel debuggers, the ATEMPT debugger displays its analysis in a space-time
event graph. Processes are stacked on the space axis, and each process’s changing
state is shown on the time axis. The graph shows blocking times of di↵erent processes,
which can illuminate load-balancing issues.

Some features of the debugger are included specifically for applications with many
processes. For example, processes that have similar communication patterns can be
grouped into a single pseudo-process on the space axis. Symmetries in execution, such
as a one-to-many broadcast are also abstracted down to a single event in the visual-
ization. While the grouping of processes is theoretically advantageous, the ATEMPT
debugger o↵ers no automatic grouping options; the programmer must manually spec-
ify sets processes he would like to group. Another problem that this debugger, and
parallel debuggers in general face is the “probe e↵ect”—namely, that su�ciently long
delays in computation (to gather data for a debugger, in this case) can hide concur-
rency errors [19].

2.2.2 The DEPICT topological debugger

The DEPICT debugger attempts to capture the important topological structures and
symmetries—“pipelines, rings, hypercubes, and trees,” for example [28]—that are
commonly found in parallel programs. Using post-mortem trace files, the DEPICT
tool attempts to identify the process topology of the program and then identifies
equivalence classes of processes. The debugger then allows the programmer to view a
graphical representation of the topology and equivalence classes. As the programmer

CHAPTER 2. BACKGROUND 14

should have an intuition a priori about the topology and communication structure in
his program, the visualization will immediately bring to light any errors in commu-
nication. If a process is not being grouped in the correct equivalence class, an error
is present.

Figure 2.2: Visualization of an incorrect matrix multiply on a torus from DEPICT.

Figure 2.2 from [28] gives an example of a visualization from DEPICT. This is clear
and readable, and should be taken as a baseline for our goals in visualization. While
DEPICT successfully shows equivalence classes for small numbers of processes, the
authors acknowledge that they have not made progress on larger topologies. While
debugging on small topologies can be informative, we would ideally have a way to
extend these methods to arbitrarily large graphs while maintaining the clarity of these
DEPICT visualizations.

2.2.3 Topological debugging by specification

The DEPICT debugger promised methods of identifying topologies, but the imple-
mentation itself was limited to two simple topologies—the mesh and the torus. One
way we can identify complex process topologies in parallel programs is to have the

CHAPTER 2. BACKGROUND 15

programmer give a specification of the topology [29]. A topological specification
would provide a template that the debugger could follow when piecing together the
communication graph from the trace file.

In addition to defining a specification for the topology, the user is asked to specify
“normal” communication patterns within the topology. If these patterns are violated,
a debugger alerts the programmer to an error. While this specification-driven model
of parallel program debugging is powerful, it requires that the programmer have (a) a
firm grasp of exactly what could go wrong in the program and (b) motivation to write
the specifications. If a programmer could enumerate all possible errors in a program,
he could probably write a program without the errors in the first place. Instead, we
hope to find methods that are independent of rigorous specification. We acknowledge
that some methods may require that the programmer do some extra work, but full
specification-design seems to be a prohibitive upper bound of what the programmer
should have to do.

2.3 Graphical pattern recognition and abstraction

The graphics community has also investigated the identification of regular and sym-
metric structures. We would like to leverage the results of this work, but the problem
is complex. Still, the following work exemplifies the approaches we think may be
useful in identifying and displaying large graphs with symmetry.

Mehra et al. [35] show a way of identifying abstractions of 3D models of man-made
shapes. For example, the Ei↵el Tower is identifiable even by a crude rendering of its
primary shapes. While the methods in their work are focused primarily on graphics-
based techniques for finding smooth approximations of the important shapes of a
model, they make an important observation relevant to large graph visualization.
Notably, “some objects, perhaps those less familiar to us, have no obvious natural
abstraction.”

Pauly et al.[38] show a top-down approach to finding structural equivalence classes
in 3D models. In finding the building blocks of models, they also identify the math-
ematical symmetry that appears through rotations, translations, and scaling. To
visualize large graphs, we would also like to identify equivalence classes. But, be-
cause segments of a graph are not as identifiable as di↵erent geometric shapes, we
instead approach the problem from the bottom-up.

CHAPTER 2. BACKGROUND 16

In work by Agrawala et al. [1] on automating the design of step-by-step assembly
instructions, the researchers had to “manually provide the semantic and functional
knowledge about the parts.” They do conjecture, however, that “it may be possible
to automatically group parts that are perceived as roughly symmetric.” Any research
that identifies symmetric structures would be a boon for the visualization of large,
symmetric graphs.

Using this background knowledge, we proceed to investigate why parallel program
communication graphs are a natural fit for abstracted visualizations.

Chapter 3

Parallel programs

Parallel algorithms are preferable to sequential algorithms in modern computer ar-
chitectures because they can harness the presence of multiple cores and processors to
execute several computations concurrently. The use of concurrency is, not surpris-
ingly, a new force in program design and, as we will see, places new demands on our
ability to understand what our programs ideally and actually do.

3.1 Parallel algorithm communication structures

3.1.1 Concurrency seen in communication structure

In order to create successful parallel algorithms, designers have to determine ways
to harness the power of concurrency. Näıve translations of sequential algorithms
to parallel architectures will not su�ce in most cases because of constraints such
as data dependencies. In finding ways to work around these data dependencies,
algorithm designers will typically manifest concurrency in communication structures.
As a simple example, a tree-like communication structure can be used to, in parallel,
sum the contents of an array (or perform any “reduction” operation) under a parallel
memory architecture in O(log n) time rather than the O(n) sequential algorithm time
complexity. The shape of the tree is pivotal to our understanding of the algorithm’s
potential. The way we view this tree is thus important to establishing the correctness
of the algorithm.

17

CHAPTER 3. PARALLEL PROGRAMS 18

3.1.2 The figures used are natural

In designing the communication structure for a parallel algorithm, the designer is
advocating a certain way of thinking about a problem. Explanations of algorithms
are often accompanied by figures that diagram the communication structure. Figures
3.1 through 3.3 show communication structures from parallel algorithms texts.

Figure 3.1: From [3], page 32. A bitonic merger for a sorting algorithm, presented
with ellipses.

One imagines that the authors of these texts have designed their figures to be ef-

CHAPTER 3. PARALLEL PROGRAMS 19

fective. They chose their figures as a natural means of communicating the algorithms’
functions.

3.2 Algorithm design

3.2.1 A problem of scale

As with sequential algorithms, it is not uncommon for algorithms to be designed, im-
plemented, and tested on smaller-scale versions of their eventual use cases. Once the
designers have worked out the bugs in their programs, they will scale their algorithms
up to larger sizes. These larger programs are clearly harder to understand, but by
designing and testing them in the small, we lose a sense of the bigger, more realistic
picture (see Figure 3.2 where the program is visualized in-the-small and -large).

3.2.2 Natural growth and a small viewing window

The symmetries of parallel communication structures are naturally extended as we
scale programs up. Because this growth is natural—no new structural features are
added as communication extends to more processors—we know that we might still
have success debugging the program from a smaller window, as if the program was
still small in scale. Not only do we see that we might have success debugging for
smaller abstractions of large programs, but we argue that we must reason about
large, complicated programs via a smaller window. Analyzing large communication
structures without such a window would lead to confusion, as we cannot reason about
structures that we cannot even adequately visualize.

When the program is scaled up, the code does not increase in complexity, but the
communication structure does. This may lead some programmers to assume that,
because (1) their code worked on small instances of the program and (2) the code has
not changed, then the code will work in the large. That the communication is more
complex is, itself, an indicator that there may be boundary cases that go unseen in
smaller test cases. Some bugs may only appear in programs in-the-large.

Even given an understanding of the potential issues in parallel algorithm design
and parallel programming, e↵ective parallel programming and visualization tools lag
behind.

CHAPTER 3. PARALLEL PROGRAMS 20

3.2.3 Ellipses in figures

Notice that in the figures we showed from parallel algorithm texts, the authors in-
cluded several instances of ellipses. As these diagrams were chosen to reflect the
clearest understanding of a problem, we can infer that the ellipses are useful and
necessary parts of the visualization of communication structures. We want to mimic
this behavior and understanding in our visualization techniques.

3.3 Visualization tools

When a parallel program successfully completes execution, it can output a trace
file that contains a record of the interprocess communication that occurred. The
trace file that is generated is barely human readable, and certainly less-than-useful
for debugging. In Appendix A, Figure A.1 shows the clog file generated by an MPI
program that features only two instances of IPC and was run with only two processes.
The log file makes no judgements on the importance of information, nor does it give
an indication of the communication structure, the back-and-forth of the program.

The curators of the MPI libraries at the Argonne National Laboratory released a
post-mortem trace file viewer called Jumpshot that visualizes programs as in Figure
3.4 [11]. While this visualization may make sense to the experienced programmer, de-
bugging still appears di�cult. If a parallel program is visualized with two dimensions
and one of the dimensions is devoted to time, as in Jumpshot, then the remaining
dimension is highly restricted. Jumpshot displays the processes of the program in
sequential order with no sense of communication topology. The lines that connect
processes, which represent IPC, do not intuitively reveal the structure of the program.
While Jumpshot gives a more complete picture of the program than the textual log
file does, it still fails to analyze the log for higher-level structure and form. Jumpshot
can give insight into message passing, but does not adequately characterize the big
picture. Figure A.2 in Appendix A shows the Jumpshot visualization that corresponds
to the clog file from Figure A.1.

In order to proceed with visualizing this sort of data, we have to decide what
we want to see that we are not getting from visualizations like Jumpshot. Parallel
programs have natural topologies, and we certainly want to visualize these topologies
from a program log file. As parallel programs are run on a set of processors that

CHAPTER 3. PARALLEL PROGRAMS 21

have a certain topology, it would be helpful to see the program’s topology for the
sake of comparison. The programmer should have a means for learning whether the
program’s topology has a clean embedding in the physical processor topology. A
display of the program topology should give the programmer an obvious indication of
whether his intentions match the reality of his code. Asymmetries in the visualization
will probably be indicators of this type of error. Finally, a visualization of a parallel
program should not blindly show all the information it has available to it; that is,
in displaying a process communication graph, it should not display a node for every
process if the graph is large, and therefore less likely to be human-readable.

To address these goals, we hope to show visualizations of large process communi-
cation graphs that abstract away unnecessary data. The segments of the graph that
are displayed should be the most important with respect to the goal of understanding
the communication structure of the program. By omitting the “time” dimension from
the 2-dimensional visualization, we will be able to view more complex patterns in pro-
cess structure. If necessary, “time” can then be added later via a third dimension
(with, for example, a scrollbar or scrubber).

As we have mentioned in Section 2.2, prior researchers have attempted to show
more meaningful visualizations of parallel programs. The DEPICT topological de-
bugger [28] is perhaps the clearest example of using communication structures to
find and fix bugs. Unfortunately, this debugger is limited to small communication
structures.

CHAPTER 3. PARALLEL PROGRAMS 22

Figure 3.2: From [3], page 62. Note the visualization of the program in-the-small and
in-the-large.

CHAPTER 3. PARALLEL PROGRAMS 23

Figure 3.3: From [3], page 188. A figure used to verify the running time of a parallel
quicksort algorithm.

CHAPTER 3. PARALLEL PROGRAMS 24

Figure 3.4: A screenshot from Jumpshot4

Chapter 4

Growing graphs

As an initial step toward visualizing large communication graphs, we will describe a
rich yet practical way of relating families of large graphs using the notion of growth.
Grammars permeate computer science, from theory, to programming languages, to
biological growth systems [39]. As we will see here, there is a natural application of
grammatical mechanisms to graphs.

4.1 String grammars

A simple and natural class of grammars are Context-Free Grammars [46], which
appear in formal language theory. A Context-Free Grammar (CFG) is made up of a
set of terminal characters and a set of non-terminal characters. A set of rules map
non-terminal characters to strings, and a start symbol serves as a “seed” for growing
strings. A simple example of a CFG is shown in Figure 4.1.

S ! 0S1

S ! "

where " is the empty string

Figure 4.1: A context-free grammar that generates strings of n 0’s followed by n 1’s

25

CHAPTER 4. GROWING GRAPHS 26

The key notion of a grammar is that it consists of a set of building blocks and
a set of rules for growing arbitrarily large, mathematically defined structures from
those building blocks. In Figure 4.1, the building blocks are 0, 1, and the empty
string, and we have two simple rules that produce an infinite class of strings, namely
{0n1n |n > 0} where 0n denotes a string of n 0’s.

String grammars can be expanded to L-systems [39], parallel string rewriting
systems. Applicable rules rewrite each part of the string in every derivation of the
grammar. Figure 4.2 shows an example of an L-system [37]. It generates a simple,
aperiodic tiling of one dimension. This demonstrates the complexity of grammars
and the structure of growth systems.

L! LS

S ! L

gives
L
LS
LSL

LSLLS
LSLLSLSL

...

Figure 4.2: A simple L-system for generating aperiodic strings

4.2 Graph grammars

Similar rewriting mechanisms can be applied to graphs using aggregate rewriting (AR)
Graph Grammars. At the most basic level, we can define a graph grammar to function
just as a parallel-rewrite L-system would. In Figure 4.3 we give a grammar that
generates the class of all complete binary trees. With each application of the grammar,
we, in parallel, rewrite every vertex labeled with “L” to the simple three-vertex tree.
All of the connections in the initial vertex labeled with “L,” which indicates a leaf,
will be added to the new vertex labeled with “R,” which indicates an interior node

CHAPTER 4. GROWING GRAPHS 27

in the tree. We say that the “R” node inherits the connections of the left “L” node.
Even with this straightforward application of graph grammars, we need the notion of
inheritance, which establishes the context of the rewritten string and how it appears
in the result string. Figure 4.4 shows the first few graphs in the derivation grown by
this grammar.

L

R

L L

Figure 4.3: A graph grammar that generates complete binary trees

L

L L

R

L L

R

L L

R

R

Figure 4.4: The first few trees in the derivation generated by Figure 4.3

This mechanism alone can create a class of graphs that we could call “context-
free graphs”—each production is applied without information about the remainder
of the graph. In addition, every family of graphs (or “derivation”) generated by this
mechanism is monotonic: nodes and edges are never deleted. The generated graphs
preserve features with each application of a rule. This is an important feature we
depend on in development of our formalisms on clustering and highlighting nodes.
The family of trees generated by the rewriting rule in Figure 4.3 are balanced and
have bounded degree. These features are artifacts of the structure of the rewriting
rule.

Languages of graphs that are generated by these mechanisms have a structure
that parallels languages developed by L-systems. There are fundamental graphs that
are not in any language of graphs that these grammars can generate. A full theory

CHAPTER 4. GROWING GRAPHS 28

of the structure of L-systems and graph-rewriting systems extends on the hierarchies
of string-based languages [42]. It is, for example, easy to see that all these parallel
systems can simulate equivalent structures to string grammars. In order to generate
more subtly connected graphs, like hypercubes, we must add additional mechanisms
to the grammatical system.

4.2.1 Partitioning: controlling duplicate inheritance

In our grammatical rules, we can add numerical labels to each vertex and then define
a partition function based on these labels. Figure 4.5 shows an example of a rule
with partitioning. Each �i represents a di↵erent partition; vertices that appear in
di↵erent partitions’ domains, like 2 and 3 in this example, will not be connected
upon application of the rule. On the second application of the rule, each node in
the 1-cube will be replaced with another 1-cube, and then the nodes labeled 2 will
be connected and the nodes labeled 3 will be connected [5]. This creates a 2-cube,
and upon further applications of the production, will create an n-cube. If we did not
include these surjective partial functions that define partitions, we would grow the
family of complete graphs on 2n vertices. Figure 4.6 illustrates the distinction.

1

2

3

1

2

�1(2) = 1

�2(3) = 1

Figure 4.5: A graph grammar that generates hypercubes

CHAPTER 4. GROWING GRAPHS 29

partition 1

partition 2

Figure 4.6: The families of graphs generated by the grammar in 4.5 with (top) and
without (bottom) the partitioning functions.

4.2.2 Junctions

Another mechanism that can be used to control the growth of a structure developed
by graph grammars can be applied to labeled junctions between each meeting of an
edge and a node. If we use nodes to represent processors, then junctions are the
graph-equivalent of processor ports. Junction partitioning and inheritance work in
the same manner as node partitioning and inheritance; a second parameter is added
to �, the partition function, for junction inheritance.

Junctions allow for the growth of, for example, grid-like structures that we will
see later are often more easily described through high-level procedures. As with
any rewriting system or grammar, we would like to be able to describe its power
by determining the class of objects—in this case, graphs—that it can generate. As
string rewriting systems are Turing complete and as linear graphs that we can create
with graph grammars mimic string rewriting systems, we know that our notion of
graph grammars is Turing complete. Because of our interest in large, symmetric,
recursively-generated graphs, the AR system’s ability to produce variations of trees,
cubes, meshes, and other typical process topologies is likely su�cient.

CHAPTER 4. GROWING GRAPHS 30

4.2.3 Parallel growth of node and edge attributes

If we were to construct large, representative graphs using the above graph grammar
productions with no modifications, we would be left with huge graphs and no direct
access to the grammatical history that generated the structures. To overcome this
di�culty, we could update properties on nodes as the graph is being grown. In the
cube example, we add a property called address to every node. The initial node starts
with its address equal to the empty string. In the rule (see Figure 4.5) at node 2,
we set address = address · 0. Likewise, at node 3 we set address = address · 1
where · here is the string concatenation operator. Properties like address can easily
be added at every step that rewriting takes place. It is easy to imagine the growth
of annotations associated with a graph’s features.

4.2.4 Further annotations

One important extension that we will later find important is the annotation of a
subgraph of the daughter as the “primary image” of the mother graph. This might,
for example, be simply the domain of the inheritance function �0. Other annotations
might indicate “extreme” or “corner” features that, after iterated application, identify
important boundaries of the ultimate graph.

We implemented the graph grammars and the following grammar-like procedural
methods in Java.

4.3 Procedural methods

As we have demonstrated, aggregate rewrite graph grammars are a potent mechanism
for describing a wide variety of structured graphs. By tweaking the rules and the
partitioning functions, we can generate several families of graphs. If we look at the
structure of the productions that are applied to a graph, we can make insightful
observations about the resulting graph family. For example, if there is a surjective
inheritance function with non-trivial domain, the resulting graph will preserve the
connectedness of the original. So, as a theoretical construct, an AR grammar provides
the basis for many useful observations about graphs.

CHAPTER 4. GROWING GRAPHS 31

Practically, however, we might include a number of procedural methods for rewrit-
ing graphs. These procedures must maintain properties useful to, say, parallel pro-
grammers. They must also remain simple enough to support coherent and logically
“obvious” growth of graph structures. Supplanting grammars with more complicated
procedural methods would be counterintuitive. We will document several procedural
operations that extend the capabilities of AR graph grammars in important ways.

4.3.1 Cyclification

The degree of every vertex in an n-cube is n, so the degree of every vertex increases
linearly with the increase of n while the number of processors is growing exponentially.
In an actual multiprocessor machine, this is not a practical topology because it will
become increasingly di�cult to connect each processor its logical neighbors. Cube
connected cycles are a rewriting of an n-cube topology that yields a graph where
every vertex has degree at most 3.

To construct a cube connected cycle, each vertex v in a cube is replaced by a
cycle of n vertices. Each of the cycle-nodes uniquely inherits one of the n edges
previously adjacent to v. Thus every vertex has degree at most 3. Figure 4.7 shows
this procedure applied to a single node, and Figure 4.8 shows this procedure applied
to a 3-cube. Physical realizability has an impact on routing time: the maximum
distance between two nodes has increased from n to n(n + 3)/2.1

Figure 4.7: The cyclification of a node

The cyclification procedure can be applied to any graph to reduce its maximum
degree to 3, and therefore to increase its feasibility as a real-world processor topology.

1Each step of a route of length n in the original cube has length n, plus an additional n/2 for each
node of the original cube it must pass through, including the starting node. Thus the maximum
distance between two nodes in the cube connected cycle is (n + 1)(n/2) + n = n(n + 3)/2 = O(n2)

CHAPTER 4. GROWING GRAPHS 32

Figure 4.8: A 3-cube-connected-cycle. The bold edges are the created 3-cycles.

We should, however, add cycles under a constraint: we should not rewrite nodes with
degree of three or fewer. Otherwise we would add processors that make communica-
tion paths longer and do not reduce the degree of any nodes. Figure 4.9 shows a 4
by 4 grid that has been augmented with cycles.

4.3.2 Vectorization with permutation functions

Suppose that a parallel program implemented a “shu✏e” or permutation that dis-
tributed data between nodes (see Figure 3.2). This could be graphically represented
by stacking multiple copies of our graph and having connections between them rep-
resent the shu✏ing interprocess communication. In another scenario, suppose that a
finite element parallel program is computing the temperature on an object in 3-space.
The heat at each point of the object is based on the heat of neighboring points. This
communication graph will be a 3D mesh—a stack of 2D grid slices. Both of these
examples make use of stacking graphs on top of one another, a process we call vec-
torization.

Let the vectorization function be V(G, f, k) where G is the graph we want to stack
and f is the permutation function that defines the way in which we connect the k

CHAPTER 4. GROWING GRAPHS 33

Figure 4.9: A 4x4 grid that has been cyclified

copies of G. Formally,
f : V (G)! V (G)

is an automorphism of V (G), the set of the vertices of G. Assuming that the vertices
are labeled from 0 to n� 1, we can define various shu✏ing and swapping functions.

To create the 3D mesh for our heat calculation, begin with G a two-dimensional
grid and apply V(G, f, k) where f : v 7! v. We iterate this process k � 1 times,
generating one new copy of G at each step.

Likewise, to create a simple shifting between levels, we could set f(v) to equal the
node with v’s label incremented by 1 mod n. So a simple shu✏e takes

v0v1 . . . vn�1 7! v1v2 . . . vn�1v0

Figure 4.10 shows a vectorized line with the aforementioned permutation function.
Additionally, we can apply these permutation functions to graphs of arbitrary com-
plexity. One example is shown in Figure 4.11, which is a vectorized binary tree with
three levels.

In order to accommodate more complicated permutations between layers of the
stacked graph, we could expand the vectorization to V(G,F , k) where F is a set of
bijective functions fi where 0  i < k that also depend on the value of k at a given
iteration of the vectorization proecess. Our above formulation has the simplifying

CHAPTER 4. GROWING GRAPHS 34

Figure 4.10: A vectorized line with permutation function f(v) = u such that u.label =
v.label + 1 mod n

constraint that f0 = f1 = · · · = fk�1. This extended mechanism could be used to
generate butterfly graphs and other complex sorting networks [16].

4.3.3 Grids and meshes

Note that while grids and meshes can be generated grammatically [5], they are simpler
to construct procedurally with a series of nested for loops. Using this method does
not preclude us from accessing features of large, grammatically generated graphs as
discussed in Section 4.2.3 above. We can label the graph as though it had been grown
from rows and columns using grammar-like mechanisms. In particular, it is likely
useful to be able to identify the relative “age” of nodes in this simulated derivation
and the obvious development of boundary features.

4.3.4 Compositions

It is worth noting that we can combine our methods of growing graphs. If, for
example, a communication structure has a tree-like graph attached to each node of
a hypercube topology, we can grow the corresponding graph by composing our cube
and tree grammars.

CHAPTER 4. GROWING GRAPHS 35

Figure 4.11: A vectorized binary tree

4.4 Gephi

We have built a system to generate graphs via a combination of Aggregate Rewrit-
ing graph grammars and of the novel procedural methods that we have mentioned.
The graphs, including all of the added node properties, are rendered in GML (Graph
Modeling Language), a portable plain-text file format that is simple to generate [24].
Once graphs are generated, we may import them into Gephi, an open-source Java
graph visualization application [6].

Gephi is a tool for graph analysis that supports graphs up to 50,000 nodes. While
this capacity may not be enough for all of the graphs that we eventually want to
consider, it is su�cient for us as a testbed for ideas. Figure 4.12 shows the program
in action.

Gephi seems primarily concerned with social network analysis, and other large,

CHAPTER 4. GROWING GRAPHS 36

Figure 4.12: Gephi

CHAPTER 4. GROWING GRAPHS 37

non-symmetric graphs. Many of its built-in features serve to identify similar seg-
ments of these networks. After finding these clusters, Gephi provides tools for vi-
sually clustering and physically grouping sets of nodes together. Surprisingly, these
similarity-finding techniques do not work well on our graphs because of their struc-
tured symmetries.

The program also provides a few layout mechanisms that give a fairly robust way
of laying out graphs. The algorithm that we have found most useful is the Yifan Hu
algorithm, an e�cient, high-quality force-directed approach to graph drawing [25].
Without alteration, this algorithm allows us to visualize moderately large graphs,
and strengthens our intuition as to whether a particular graph has a simple two-
dimensional visualization.

Gephi is extensible, and provides a complete API. In later chapters, we will de-
velop node metrics. In Gephi, these are called “statistics” on graphs. Using the
Statistics API, we can cleanly implement new algorithms that assign values to new
properties of nodes. We can then use the filtering interface in Gephi to show or hide
parts of the graph based on the values of these new properties. With these filters, we
can use sliders that will show nodes based on ranges of values, or we can show nodes
based on the boolean value of a property. We can also compose filters with operators
like INTERSECTION and UNION. Once we have used the filters to hide the nodes that we
do not want to see, we then apply a layout algorithm to get a clean view of our sim-
plified graph. Gephi also allows us to create new layout algorithms. All of the figures
generated for this thesis are a result of our modifications of the Gephi-based toolchain.

Even with the built-in tools provided by Gephi, our large graphs are hard to
visualize. We need a means to control how we place our focus and where we abstract
sections of graphs.

Chapter 5

Theoretical foundations for large
structure visualization

There is no precedent in the current state of graph drawing for visualizing highly
structured, symmetric graphs. Here we present a few ideas about how we want
to approach this problem. Both generalized fisheye views and the idea of feature
classification within graphs give us useful ways to conceptualize visualizations that
we might consider successful.

5.1 Fisheye views

In Section 2.1.2 we discussed the general use of a degree of interest function as a node
metric that is useful for graph visualization. We noted that while useful, the method
su↵ered from the problem of defining the a priori importance and distance functions.
We can näıvely let the distance function d(x, y) between the focus x and a node y be
the length of the shortest x, y-path in the graph. This method of defining distance is
not resilient in light of changes in the repeated substructure of the graph. For example,
we may want distance to reflect distance between certain types of repeated subgraphs
rather than between individual nodes; distance can be measured in di↵erent units
other than edges. In visualizing cube-connected cycle generalizations of hypercubes,
for instance, we may want to use the simple distance function from the underlying
n-cubes rather than the näıve distance function of cube-connected cycles.

38

CHAPTER 5. THEORETICAL FOUNDATIONS 39

The a priori Interest (API) function, on the other hand, lacks even a näıve ap-
proximation. Any API function is making a decision about the inherent importance
of a node in a graph, a task which, as we will see in the next section, is nontrivial
and is one of the essential questions we ask when we try to visualize large graphs. In
order to find relevant API and distance metrics, further insight must be made into
the graphs.

5.1.1 Applicability to large graph visualization

The problem of large graph visualization seems to be aligned with the type of problem
that can be solved with fisheye views. Furnas, the pioneer of generalized Fisheye (FE)
Views notes a very important distinction to make when discussing fisheye views: the
what versus the how [18]. The generalized fisheye view is a model for finding fisheye
subsets of data: Furnas’s seminal paper in generalized fisheye views puts forth the
degree-of-interest (DOI)-based approach of finding these subsets [17].

In [18], Furnas claims that the majority of the work done for focus+context
visualization problems has used some formulation of FE-DOI subsets. While the
research in the field covers a broad spectrum of visualization techniques (distortion
views, zoom views, view+overview, view+closeup, and multi-resolution displays [18]),
they can all be formulated in terms of the FE-DOI function. These various papers
are primarily concerned with addressing the question of how to display these FE-DOI
subsets. The work of generalized fisheye views was intended for the application to
data where we are lacking Euclidean geometry, such as graphs [18], and is therefore
more concerned with the problem of what to include in the FE-DOI subset.

Furnas then puts forth three criteria for the applicability of a generalized fisheye
strategy to a structure [18]. Our large, highly structured graphs satisfy these criteria,
which are shown in Figure 5.1.

First, our graphs can be static, as they are built from the top-down as communica-
tion graphs from trace files of parallel programs, or from the bottom-up grammatically
or procedurally. We could, if desired, add a temporal dimension to the graphs in-
duced from trace files, but this is not a necessity. We think that, for visualization, the
important view of a communication graph is the projection of the messages passed
between processors. As we have discussed above, in the worst case, we can apply the
näıve distance function between nodes to the graph. Of course, we can develop more
complicated distances in our graphs, but they are not necessary to satisfy the criteria.

CHAPTER 5. THEORETICAL FOUNDATIONS 40

Criteria for applicability of the generalized fisheye model:

1. Some reasonably static structure with a notion of distance,

2. Some notion of independent level of detail or a priori importance for
di↵erent parts of the structure, and

3. Interaction can be considered as focused at a point (or small region, or
small number of points) in the structure.

Figure 5.1: Furnas’s criteria for the applicability of the generalized fisheye model

Second, most of our graphs have some clearly important nodes. By creating
graphs from grammars, importance that we assign to nodes of the daughter graph
in the initial grammatical productions can be maintained and updated (additively,
or otherwise) through each iteration of the grammatical generation process. Even in
completely symmetric graphs like hypercubes, we can assign an a priori importance
based on attributes of the grammatical generation. For example, for the hypercube,
we can assign importance based on the n-bit address that identifies each node.

Our problem has a reasonable instance of a focus. If a parallel program has an error
in a given processor or process, we often want to better understand the communication
around that node. Thus we can identify a structural focus. If we want to investigate
the structure between disparate processors, we can specify multiple foci.

Generalized fisheye views are intended for structures that satisfy the three con-
ditions of Figure 5.1, and the existence of FE-DOI subsets of a structure give no
indication as to the best way to visually represent the structure. In discussing some
basic approaches for representing data that is hidden from view in a one-dimensional
structure, Furnas notes that ellipses can be used to take the place of some of the
lost information in a less-destructive way than simply omitting all unseen data [18].
This basic use of ellipses gives us precedent for our use of ellipses in visualizing large
graphs. The following section shows that there is some precedent for using fisheye-like
abstractions in important problems of understanding complex graph-like structures.

CHAPTER 5. THEORETICAL FOUNDATIONS 41

5.2 Application: Route maps

As an example of how FE views can e↵ectively reduce visual complexity, we consider
the presentation of route maps. Work by Agrawala [2] has created route maps that
are tailored to give drivers a clearer picture of directions (see Figure 5.2). While this
process modifies shapes, lengths, and angles of the roads, the changes are made under
constraints that do not fundamentally change the route (ie. change turn directions, or
add/delete road intersections). A key feature of the route maps is that they restrict
their focus to the route in question and generally abstract away the surrounding roads.
Not all roads that are not in the route are made invisible: as the contexts of the roads
on the route among other roads not on the route are fundamentally important visual
cues, they are included in places where they can be fit without disrupting the original
route map.

Figure 5.2: A route map generated by the techniques in [2]

While the procedure for reducing the visual complexity is the primary focus of
Agrawala’s research, methods of addressing route context are directly related to our
goals for large graph visualization. The decision to show context via roads not in the
route shows a three-way partition of information. Each road falls into one of three
categories:

CHAPTER 5. THEORETICAL FOUNDATIONS 42

1. A road in a route is important : it is visible.

2. A contextually relevant road is important : it is visible, but less prominent.

3. A road is unimportant and we see no indication of it in the visualization.

5.3 Feature classification

Borrowing from the classification of information in route map visualization, we adopt
a basis for visualizing large, highly structured graphs. Consider this model at a
fundamental level: when attempting to visualize a large graph, or large structure
in general, there will be certain fundamentally important pieces or patterns of the
structure that we need to see in order to orient ourselves. There will be a collection of
structural features that may add context to or clarify important parts of the structure,
but they are not inherent to understanding the structure as a whole. Finally, there
are features that are superfluous or unnecessary with respect to the features already
identified as important.

Often we can find structures that have seemingly no unimportant features. In
fact, for some graphs, the entire structure may be fundamental to its understanding.
For small graphs such as the one seen in Figure 5.3, the task of partitioning the
vertices into three classes is trivial: every vertex is important. Without any given
vertex, we would be uninformed about a fundamental feature of the graph. Note that
the three-way classification model remains valid, even for small graphs.

Figure 5.3: An example of a small, uniformly-important structure

Large graphs that are highly structured, whether they are constructed via the
grammatical or procedural methods described in Chapter 4, are likely to have a

CHAPTER 5. THEORETICAL FOUNDATIONS 43

nontrivial classification of nodes. Grammatical methods for building graphs produce,
by definition, graphs that contain repeated patterns, allowing for the separation of
the final products into equivalence classes or “representative” components. Because
our procedural methods of building graphs are all e↵ectively iterative processes, the
resulting graphs are highly patterned.

We will be able to find clearly important or representative features of the large
graphs that will comprise the primary structure of our visualization. One method
that we have of creating the three-way classification is by identifying a large set of
nodes as important, and then pruning that set down to a small number of visible
important nodes. The other important nodes are encapsulated in our application
of ellipses to the visualizations. Ellipses allow us to indicate where repetitions of
important information are occurring, and to do so in a way that does not clutter the
visualizations with an overabundance of visible nodes. Finally, many nodes will not
be in the initial large set of important nodes. These are the unimportant nodes: they
do not directly contribute to the fundamental understanding of the visualization in
question. Despite their lack of value to us, the ellipses we add will still, in most cases,
stand in for unimportant nodes. Figure 5.4 shows a Venn diagram of our three-way
classification model.

Important Invisible

UnimportantImportant and
invisible

Important and
visible

Figure 5.4: The three-way classification model for large graphs

The decision to omit unimportant nodes from a visualization is obvious. The goal
is to show meaningful abstractions of large graphs, and if we included unimportant

CHAPTER 5. THEORETICAL FOUNDATIONS 44

nodes, our visualizations would quickly grow to an intractable size. Likewise, we
cannot even include all of the nodes that we have deemed important. In many cases,
the size of the set of important nodes is directly proportional to the size of the input
graph. Techniques for visualizing graphs that showed the entire set of important
nodes would therefore be unsustainable.

5.3.1 Non-uniqueness of classifications

To find the important features of large graphs, we can use techniques that vary in
terms of justification from intuitive to mathematical. In the former case, we can make
strong, reasoned arguments for why certain parts of our graphs are more important
than others. Such arguments can be based on several things, such as di↵erent focal
points of the graph, as well as our natural intuition for what the abstracted and
abbreviated graphs should look like. For graphs where our intuition is weaker, we
can harness various metrics for determining what nodes are important. When using
these metrics, we have to be careful that they have a reasoned basis. Applying metrics
that have no intuitive merit will likely result in visualizations that, while showing us
something, will not give us natural representations of the graphs in question.

While some features of large graphs may be consistently important in all scenarios
across all domains, the derived feature classification of a graph is generally a function
of its ultimate use. In fisheye views, we calculated a degree of interest from a given
focus. If we attempt to identify a three-way classification of a graph while keeping
a specific focal vertex in mind, we must bias our methods toward that vertex. As a
näıve example, if a method of finding the important nodes of a graph returns a set of
nodes that do not include our focal vertex, then that method is not adequate for the
given scenario.

Given di↵erent techniques, whether mathematical or intuitive, and di↵erent sce-
narios, like altering the focal points, we see that the classifications can vary signifi-
cantly for a given large graph. In the next chapter, we begin to discuss our attempts
to construct meaningful visualizations of large graphs, guided by the principles of
fisheye views and feature classification.

Chapter 6

Large graph layout

In Chapter 4 we discussed numerous ways to construct large, practical graphs. The
created graphs not random: they are highly structured by their use in parallel pro-
gramming. Some are easy to draw and conceptualize in two dimensions and others
are not. Many communication graphs that have a well-defined boundary, such as
trees and grids, can be simplified for visualization in clean, informative ways. Graphs
that are not easily projected onto two-dimensions present a greater challenge. In this
chapter, we focus on large graphs that are easy to draw in two dimensions—trees and
grids—and present an algorithm for abstracting structural patterns in graphs.

6.1 Trees

In a tree, suppose that one node is of particular importance. This could be the case
if we are debugging a parallel program and there is an error in a specific process.
The model of fisheye views seems applicable to this situation—we have a clearly
defined focus and thus would want to find an appropriate distance function. Before
we attempt to derive such a distance function, we will first consider what we should
see in the visualization of a large tree. As a point of reference, Figure 6.1 shows a basic
rendering of a depth-8 tree in Gephi. For trees that are any larger, this visualization
becomes di�cult to display in one frame.

45

CHAPTER 6. LARGE GRAPH LAYOUT 46

Figure 6.1: A visualization from Gephi of a tree with depth 8

6.1.1 Building a tree visualization

In a tree data structure, the root has an inherently vital role, so we assume that the
root of the tree should be visible. We also assume that the focus should be visible.
Apart from these two nodes, there are no other nodes that are fundamental to the
display of the graph. Our goal is thus to find nodes that inform the context of the
focus and the root without detracting from the importance of those nodes.

The focus’s ancestors and descendants, beginning at the root and ending at a
set of leaves, are probably of heightened importance. Additionally, if the tree was
constructed for use in a parallel algorithm, the nodes that are at the same depth
in the tree as the focus are also important because they, along with the focus, have
similar functionality. Finally, the leftmost and rightmost nodes at each level are
important because they establish the general shape of the tree. The leaves of the tree
give further information about the shape of the tree. If we displayed all of the nodes
that we have now defined as important, we would end up with a set of nodes that,
although elided, grew larger and therefore was harder to visualize for greater initial
tree sizes. We would end up with a visualization like Figure 6.2.

CHAPTER 6. LARGE GRAPH LAYOUT 47

level 2

Figure 6.2: A 5-leveled binary tree with only important nodes shown

If we try to visualize this for a bigger tree where the focus is close to the root, we
will end up displaying a huge subtree stemming from the focus. We must find a way
to visualize the tree without showing all of these seemingly “important” nodes.

First, notice that in Figure 6.2 we see every element on the focus’s level. We
probably don’t need to see all of these nodes; instead, we can leverage the fact that
trees have natural boundaries. The left and right (or first and last, in a non-binary
tree) children at each node establish an orientation to the graph. To understand that
an entire level of a tree is important, it su�ces to show the leftmost and rightmost
nodes of the level, in addition to the focus. We can then use ellipses to signify that
there are important nodes that we are not showing because of space constraints.

In visualizing the ancestors and descendants of the focus, there is an inherent
asymmetry: if the focus is at level k, then it has k ancestors, whereas it can have
exponentially many descendants. To abbreviate the path from the root to the focus,
we can simply remove the majority of the intermediate nodes and replace them with
ellipses. For the descendants, we can treat the subtree rooted at the focus as a new
tree, and visualize it using these same methods. Essentially, the subtree will be visual-
ized by showing a rough outline of its shape, using ellipses to remove complexity. The
removal of large subsets of visible important nodes leaves us with a tree visualization
like that of Figure 6.3.

Using ellipses to abbreviate graph visualizations establishes the three-way classi-
fication of nodes in a graph: visible important nodes, hidden important nodes, and
unimportant nodes. As a general rule, most nodes should be unimportant, and most

CHAPTER 6. LARGE GRAPH LAYOUT 48

. .
 .

. . .
. . .

...

...

.
...

.
 .

.

Figure 6.3: The visualization of a large tree using ellipses

important nodes should not be shown. The unseen important nodes should be clearly
implied by the important nodes that we do see. The nodes we show should be the
minimal set of important nodes that clearly imply the entire set of important nodes.

Note that this visualization works intuitively because trees have a natural pla-
nar symmetry. There is a definable left and right side of a tree (accessible via the
grammatical construction), and trees are easy to draw in the plane regardless of size.
Because trees are relatively easy to draw, they are easy to abbreviate. In Figure 6.3,
the ellipses denote that certain boundaries of the tree are not displayed for the sake
of clarity.

6.1.2 Multi-focal extensions

There is no fundamental reason why we need to limit our large tree visualization
techniques to problems with a single focus. By adding multiple foci, we obtain a
visualization of the interplay between a few nodes in a large graph. With two foci, we
get a sense of the relative hierarchy between the nodes, the distance between them in
the graph, common ancestors, and whether there is a path from the root to a leaf that
contains the foci. These traits all inform the communication between two processes
in the bigger picture of a parallel program.

As an example, suppose that there is an interesting event at the first focus. Judg-
ing by some algorithm we implemented, the first focus should receive data from the

CHAPTER 6. LARGE GRAPH LAYOUT 49

second focus at some point in the execution of the program. By visualizing the com-
munication graph (a tree, in this case) with two foci, we could see that, for example,
there is not a hierarchical line of communication between the two processes—we must
have misunderstood in our implementation of the algorithm.

6.1.3 A generalization for finding the context around a node

While we gave an argument for finding the context around a focus in a tree, we present,
now, a more generalized framework for finding such context. We rely on the fact that
graph grammars fully expose the nature of growth of our large communication graphs.

Suppose we have a graph G that was generated using grammatical methods. Thus
G is some graph in a derivation of graphs {Gi}. A graph grammar production includes
inheritance functions that copy the entire graph to the next graph in the derivation.
Denote one of these inheritance functions as the primary inheritance function. Our
graph rewriting system ensures that graphs in the derivation grow monotonically
upon successive applications of the production (see Sections 4.2 and 4.3). We may
also think of the growth of a graph as an accretion of features. As a result, each
feature of graph G can be thought of as first appearing in some derivation step.

Therefore, given a focus f , there exists some i where Gi is the first graph in the
derivation where f appeared. In the preceding derivation steps, Gi�a, Gi�a+1, . . . , Gi�1,
we can identify nodes that are, under some inheritance function, in the range of �(f)
in the rewriting process. These nodes are the immediate ancestors of f . Repeating
this process with the immediate ancestors of f , we identify the ancestors of f arbi-
trarily far back in the derivation sequence. The image of these ancestral nodes in
Gi, Gi+1, . . . , Gi+r identifies an increasingly large context about the focus f . Algo-
rithm 1 and Figure 6.4 demonstrate this process.

The identification of the image of Gi+r in G, viewed along with some a priori
interesting nodes in G, will give a sense of the important local context around f , as
well as a picture of the greater graph. This method creates, in a sense, a ball in G

that encloses the most important features around f . The parameters a and r form
an interval in the derivation that can be adjusted based on the granularity that we
desire to see in our visualization.

CHAPTER 6. LARGE GRAPH LAYOUT 50

Algorithm 1 Display a ball around f in G

1: Find i such that f first appears in Gi.
2: Find all images of f under inheritance in Gi�a. Call these A.
3: Derive, from A, the subgraph of Gi+r that is C, the image of A. These features all

have ancestors in A. The shape of this subgraph for many grammars resembles
the family.

4: Highlight the image of C in G. These features are the important features about
f in G.

Gi Gi+r

Gi-a

G

G0

ancestors of f, A, are identified

f first appears

shape of context, C, determined:
the descendants of f appearing in Gi+r

interesting nodes near f.
The projection of C in G

C

ff f

size of context

ancestral radius

Figure 6.4: Finding a contextual ball around f

CHAPTER 6. LARGE GRAPH LAYOUT 51

6.1.4 Constructing the sets

Given our intuition for the visualization of a large tree, we can algorithmically define
the set of important nodes and within those nodes, define the important nodes that
will be visible.

First, suppose we have focus f and root a in tree T with vertex set V . We have
that l and r are the leftmost and rightmost leaves of T , respectively. Then let

Level = {v 2 V | level of v = level of f}
Sides = {v 2 V | v is in the path from a to l or from a to r}

Bottom = {v 2 V | v is a leaf}
Context = {v 2 V |9 path from r to a leaf that contains f and v}

Important = Level [Sides [Bottom [Context

The set Important is the collection of nodes that we have intuitively described
as important: derivation information, extremal values, final nodes, and the seed for
a contextual ball, respectively. We apply another set of rules in order to determine
which important nodes are visible in our visualization.

V isible = {v 2 Important | d(v, f) < ⇢} [(Sides \ Level) [(Sides \Bottom) [{r}

While the contextual ball gives us a sense of the important nodes around the focus,
it can be applied to extremal nodes, as well. For example, in a tree, we can use
Algorithm 1 to get a context around the leaves, with Gi = G and r = 0. We can
generally use this process for all nodes identifiable as extremal like, for example, nodes
that appeared initially in the first and last derivations.

Additionally, V isible should include the sides of the subtree rooted at f that is
a subset of Context. In this formula, d is some distance function, and ⇢ is a scaling
factor. The formula ensures that we see the important nodes that are close to the
focus, as well as the important nodes that define the shape of the tree with respect
to the focus. The important nodes that we see close to the focus are a specific case
of finding a contextual subgraph, as we have described above.

Previous work on large tree visualization attempts to fit the entire tree on the
screen via clustering [8] or folds in subtrees to create simpler visualizations [21]. If a
graph is clustered, its interior structure is unknown to the user. Likewise, if subtrees
of a graph are hidden via folding, the user may lose sight of the general shape of the

CHAPTER 6. LARGE GRAPH LAYOUT 52

graph. Our method inserts ellipses such that the structure of unseen areas of the
graph is implied.

Our method is, in disguise, a means of pinpointing an FE-DOI subset of our graph
with respect to focus f . The distance function here is complicated, and thus easier to
explain set theoretically, as above. Instead of näıvely letting distance be the length
of the shortest path between f and v, the distance becomes nearer if v is on the
same level of the tree as f or if v is a root-leaf path that contains f . These are the
nodes that, in a tree structure, are most closely related to f . By finding this subset
set-theoretically, we can easily see how the three-way classification forms; otherwise,
we would have to define a distance function that hid the appropriate nodes of the tree
when the threshold of the fisheye view was set accordingly. This adds unnecessary
complications to an intuitive process.

6.1.5 Adding ellipses

As we claim that our visualizations gain their usefulness because of our use of ellipses.
We now explain how they are added to the graph. For trees, we add ellipses when
we remove nodes from the various subsets of important nodes that we constructed:
Level, Sides, Bottom, and Context. Because each of these four sets is constructed
based on an intuitive visual model of trees, all of the ellipses we add stay within
these sets; none will cross over from, say, Side to Bottom. Because these ellipses are
replacing sets of nodes that were both important and closely associated to each other
before they were hidden, we claim that they will clearly indicate important patterns
that are found in the graphs.

Ellipses could be incorporated in alternative ways, as well. Suppose that ellipses
are simply highly deemphasized exemplars for otherwise hidden equivalence classes
of nodes. By showing these ellipses in place of the less important, hidden classes of
nodes, we provide hints that some nodes are missing.

Additionally, suppose that we find a visualization via the method outlined in
Algorithm 1. We can then add ellipses extending “backward” from the nodes that
first appear in Gi�a and “forward” from those that first appear in Gi+r. In this case,
the ellipses are not visually well-defined, but they succeed as a means of abstracting
the grammatical growth of large communication graphs.

CHAPTER 6. LARGE GRAPH LAYOUT 53

6.2 Grids

Like trees, grids have well-defined boundaries. In fact, grid boundaries are even
clearer because for trees, we must assert that the leaves have an ordering. While this
is theoretically easy enough, in practice it requires extra bookkeeping. Regardless of
how we construct grids, there will be naturally occurring boundaries at the edges.
For square meshes, the distinctions of north, south, east, and west are arbitrary (so
long as north is opposite south, of course).

6.2.1 Building a grid visualization

Using the concepts we developed from building a tree visualization, we can easily
define important subsets of nodes in a grid. Suppose we have a focus f at row i

and column j in a grid G. The important subsets of the grid are the boundaries of
the grid, the row and column that contain f , and the internal context of f . The
last subset mentioned, the internal context of f , is a square-shaped set with f at its
center. In other words, it is the set of all nodes that fall within c rows and columns
of f . This internal context can be seen as a specific example of finding a contextual
subgraph, as we have described above. Figure 6.5 shows the internal context of f

with c = 1.

f

Figure 6.5: black nodes are the internal context of f with c = 1 in a subgraph of G

CHAPTER 6. LARGE GRAPH LAYOUT 54

6.2.2 Constructing the sets

Given focus f at (i, j) of m ⇥ n grid G with vertex set V , we have the following
important subsets:

Row = {v 2 V | v is at (i, ⇤)}
Column = {v 2 V | v is at (⇤, j)}

Top = {v 2 V | v is at (1, ⇤)}
Bottom = {v 2 V | v is at (m, ⇤)}

Left = {v 2 V | v is at (⇤, 1)}
Right = {v 2 V | v is at (⇤, n)}

InternalContext = {v 2 V | v is  c rows or columns away from f}

which gives

Boundary = Top [Bottom [Left [Right

Context = InternalContext [Row [Column

and Important is the union of these sets. Then we have that the V isible subset of
important nodes are those nodes contained in at least two of the seven subsets, or
within a distance threshold ⇢ from f . Our formulation of the visible nodes allows
more boundary nodes to be visible if f is closer than ⇢ or c to the boundary. As with
trees, we then apply ellipses in place of elided nodes only within each of the seven
important subsets.

6.3 A generalization

Methods for visualizing large graphs with well-defined boundaries take a general
shape. The important nodes can be broken down into two subsets: the boundary
and the context. While we derived these subsets via intuition for trees and grids, we
have access to these features—or at least some approximation of them—for all of the
large graphs we generate with grammars or our procedural methods.

The boundary of a graph can be found using the node properties we tracked in
Section 4.2.3. In constructing trees via grammars, we keep track of a both an address

CHAPTER 6. LARGE GRAPH LAYOUT 55

and a generation count. The newest generation of nodes in a tree are clearly the
leaves, which are part of the boundary. Furthermore, node addresses that are either
all 0’s or all 1’s (in the case of a binary tree) indicate the left and right shells of the
boundary. Nodes that are on the boundary of a grid are marked as such during the
grid’s iterative generation procedure. Our generation procedures are defined so that
traits of the graphs, such as their boundaries, can be easily extracted.

In attempting to determine the context around f , we can use two di↵erent tech-
niques. First, we can apply the generalized framework for finding contextual sub-
graphs, as described in Section 6.1.3. Alternatively, we can leverage node metrics on
the graph to give us this relevant information. For graphs that have clear boundaries,
we have found that simple distance metrics work well. Our graphs are highly sym-
metric, so more complicated metrics such as the aforementioned Strahler number do
not tend to lead us toward a more enlightened abstractions. Graphs that do not have
easily defined boundaries require more subtle approaches.

Chapter 7

Large graph layout without
boundary

When we constructed the visualization of a large tree, we depended on the fact that
trees are easy to draw in the plane. Likewise, two and three-dimensional grids have a
natural planar visualization even as they grow large. While some parallel algorithm
topologies may resemble these planar communication structures, there are certainly
cases where this is not true. The n-cube, for example, is trivial to visualize for
n = 1, n = 2 or n = 3, as seen in Figure 7.1. Even 4-cubes have a reasonable
two-dimensional projection (Figure 7.2). However, as n grows further, finding a
meaningful two-dimensional projection of an n-cube becomes di�cult.

Figure 7.1: Simple planar drawings of 1, 2, and 3-cubes

Hypercubes do not have natural two-dimensional projections in part because their
highly symmetric structures do not lend themselves nicely to a definition of boundary.
Both trees and grids have a clear definition of boundary (sides, tops, and bottoms)

56

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 57

Figure 7.2: A two-dimensional projection of a 4-cube or tesseract

that hypercubes simply do not have. Our desire to find clean and abbreviated two-
dimensional visualizations of hypercubes is driven by their prevalence and their utility.
One reason that hypercube architectures have been successful communication struc-
tures is that common parallel algorithm topologies—notably grids and trees—have
embeddings into the hypercube. For example, if a grid has d dimensions and p is
the sum of the log of the size of each dimension, then the grid can be embedded
into a p-cube [43]. We still want to be able to visualize cubes because (a) they will
not always be embeddings of these simpler structures and (b) we can embed grids of
arbitrary dimension in cubes, and even though such grids have natural boundaries,
we have not shown a practical method of displaying them in two dimensions.

The contextual ball algorithm (Algorithm 1) can be applied to these graphs as
well, but it is more challenging to see what features are important. Thus we present
additional metrics that may give informative views of these di�cult graphs.

7.1 Imposing boundaries on the unbounded

While cubes do not have natural boundaries, we have still, via the growth of the
cubes, updated properties on each node. Specifically, each node has an address, a

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 58

unique n-bit binary string. All n-bit addresses are used by the 2n nodes in an n-cube,
and the distance between nodes A and B is the Hamming distance of the addresses
of A and B, or the minimum number of bit-flips necessary to change the address of A

to the address of B. The ordering of the collective addresses is arbitrary. We could,
for example, split every node’s address in half and swap the halves, creating a new
address for every node. This would not change any of the address properties.

But even though the ordering of the address bits is arbitrary, we have chosen one of
these orderings when growing the cube. Specifically, we have chosen the ordering that
corresponds directly with the growth mechanism as conceived by AR graph grammars.
Given this ordering, we can impose boundaries on hypercubes. We could let every
node with address = 0a1a2 . . . be on one boundary, while nodes with address =
a0a1 . . . 0 are on another boundary. In keeping with the general plan we outlined
in the previous chapter, we will visualize large graphs with respect to a focus or
foci. To aid in our layout techniques, we can suppose that our focus f with address
ab . . . yz lies on the intersection of two boundaries: those that have address a . . . and
those that have address . . . z. By using a property of our focus, we can construct an
(admittedly arbitrary) boundary around that focus. Obviously this boundary, which
contains 2n � 2n�2 = 3(2n�2) nodes, is growing exponentially with n. We will have
to employ other techniques in order to use this conceptual boundary to generate an
e↵ective visible subset of the nodes.

7.2 A property-based layout algorithm

We want a way to visualize a graph using properties that we have derived. Such
properties will typically be related to the focus of large graphs, so the visualizations
we generate will be customized based on a given application. Given two numeric
properties on graphs, we have developed an intuitive layout algorithm, which can
be seen in Algorithm 2. The primary use of this algorithm is to show relationships
between di↵erent node metrics.

The algorithm is simple: it assigns coordinate values to visible nodes directly based
on its values for two distinct node metrics. Before implementing this algorithm, we
would be forced to view the visible segments of our graphs by one of Gephi’s standard
layout mechanisms, which do not account for the additional structural information
we have added via node metrics.

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 59

Algorithm 2 Property-based layout on two metrics
Nx an x-normalization factor
Ny a y-normalization factor
for each node n do

if n is visible then
n.x n.metric1/Nx

n.y n.metric2/Ny

else
n.x undefined
n.y undefined

end if
end for

7.3 Useful node metrics

We lack an intuition about what exactly we want to see when we are visualizing a
graph that lacks boundary. Instead of forcing our perceptions onto a visualization,
we attempt to find interesting concepts which we can extend to node metrics. These
metrics give us a toolkit with which we can attack our visualization problem. Whereas
we cannot conclusively say that one means of visualization is unequivocally the best,
we seek to find interesting and relevant ways to explore these di�cult structures.

These metrics present alternatives to the method described in Algorithm 1 for
finding contextual subgraphs around important nodes. Each metric assesses the graph
in a di↵erent way, but they all depend on the features guaranteed by grammatical or
grammar-like growth. Generally, they use the address property, which is annotated
on every node throughout graph derivation.

7.3.1 Single-source shortest path

If we assume that every edge of our graph has weight 1, we can trivially construct
the näıve distance metric between our focus f and every other node in the graph. To
find the single-source shortest path distances from source f , we implement Dijkstra’s
algorithm in Gephi. This metric gives a baseline for all other metrics, and it allows us
to visualize other metrics versus our conventional notion of distance via our property-

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 60

based layout algorithm.

7.3.2 Edit distance

The edit distance between two strings is the cost of transforming the first string
into the second via a series of insertions, deletions, and substitutions. Each of these
actions is assigned a cost, and through dynamic programming, we can determine the
most cost-e↵ective transformation. This notion of edit distance is formally known as
the Levenshtein distance.

We can apply edit distance to graphs by distinguishing a specific property for
comparison. Our process of growing graphs has given each node a unique address
property, so we can apply the edit distance metric to that. This di↵ers significantly
from the näıve shortest path distance metric because in computing edit distance, we
can make jumps between vertices that are not along existing edges. For example,
take two nodes with addresses 0110 and 1011. One possible shortest path between
these two nodes is

0110
1! 1110

2! 1010
3! 1011

which has length 3. However, the edit distance between these addresses can be found
by first deleting the trailing 0 and then inserting a leading 1, or:

0110
1! 011

2! 1011

Thus the edit distance between these two addresses is 2 (provided that the cost of
deletion and the cost of insertion are both 1).

While the shortest path distance is more intuitive in the graph-theoretic sense,
viewing other nodes with small edit distances from the focus could give insight into
the structure of the rest of the graph. Furthermore, there may be other properties
that could be constructed via the growth of graphs for which edit distance is a strong
indicator of structural importance. Our example uses the address property, which
by definition is tied to the simple graph-theoretic idea of adjacency. If nodes x and
y are adjacent in one of our graphs, they will have addresses that are related either
by one insertion, one deletion, or one substitution. In that sense, edit distance with
substitution cost 1 will mimic shortest path distance for the immediate neighbor of
f . However, as nodes get further away by shortest-path distance, they will be strictly
not further away in edit distance.

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 61

7.3.3 First bit set

The address of a node is a binary encoding of the way the graph was grown. By
extracting features from the address or other properties, we can develop simple
pictures of complicated graphs through abstraction. One such simple feature of the
address property is “first bit set.” Simply put, the first bit set of an address is the
first bit from the left that is nonzero. If the address is all 0’s, then the first bit set
is �1. This measure partitions the graph into a series of subgraphs that reflect the
growth of the larger graph.

For example, finding first bit set on an n-cube gives n subgraphs: an n � 1-
cube, an n � 2-cube, etc. all the way down to a 1-cube, and two 0-cubes. These
cubes correspond to cubes with first bit set values of {1, 2, . . . , n � 1, n,�1}. These
subgraphs conveniently show the growth of the hypercube class of graphs; by revealing
the substructure of graphs, the “first bit set” property allows the user to better
understand how the graph was formed.

This formulation is not focus-specific, but it can trivially be modified in order
to relate to f . Instead of calculating the first bit set, we calculate the first bit that
deviates from the address of f . By doing this, we are essentially realigning all the
addresses with f ’s address as the new zero, and computing first bit set from there.

Not all graphs that we could grow will be some composite of binary features. For
example, while a binary tree has a natural binary address growth, a ternary tree
does not. We can extend the idea of first bit set to properties with alphabets of size
k by defining k � 1 new properties. If the alphabet for a ternary tree’s addresses is
{0, 1, 2}, then we can define “first bit 1” and “first bit 2.” As we have one of these
properties for each of the k � 1 degrees of freedom, they give us the same power as
“first bit set” for binary addresses. Luckily, computer scientists tend to prefer binary
systems, as they are the physically realized standard. We do not expect to need to
reason about the structures over these larger alphabets.

There are parallels between “first bit set” and the contextual ball we identify in
Algorithm 1. The “first bit set” metric identifies i in step 1 of the algorithm. Given
a node with address abc in Gi, its image in G has address abc000 . . . Likewise, the
descendants of abc in G are all nodes prefixed with abc. The ancestors of a node with
address abc . . . xyz are all nodes in any of the Gi with address a prefix of abc . . . xyz.

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 62

7.3.4 Strahler numbers

We mentioned Strahler numbers in our earlier discussion of large graph visualization,
and we noted that they are directly applicable to large trees and directed acyclic
graphs. Unfortunately, these are graphs that tend to have boundary already. We have
other methods of finding visualizations that capitalize on important substructures of
trees. Strahler numbers on highly structured graphs are not very useful as a means
of demonstrating high-bandwidth parts of the graph because every set of functionally
equivalent nodes in a graph will have identical Strahler numbers.

Still, we could find an interesting use for Strahler numbers. For the majority of
our work, we are assuming the worst case scenario: that our communication graph
has unweighted edges, and therefore every spanning tree is a minimum spanning tree.
Instead suppose that we have edge weights that represent communication frequency
or throughput in a parallel algorithm. If two processes exchange values frequently, the
edge between their corresponding nodes will have a high weight. We then can com-
pute a nontrivial minimum spanning tree over the multiplicative inverses of the edge
weights. This will give us a spanning tree that includes important communication
lines between processes.

We can then compute the Strahler numbers of each node by rooting our minimum
spanning tree at the focus f of the graph. The Strahler numbers will give us a
symmetric view at how the important lines of communication throughout the graph
are structured with respect to f . Even though this will be, as noted above, a highly
structured assignment of Strahler numbers to nodes, we can group together nodes with
identical Strahler numbers into equivalence classes. We can then use the generated
equivalence classes to show only clustered segments of the graph. Without a notion
of importance or frequency of communication on edges, Strahler numbers provide an
incomplete and redundant view of graphs.

7.3.5 The “symmetry from boundary” metric

In attempting to visualize a hypercube, we quickly realize that there may not be a
natural visualization. By using the theory of imposing a boundary on an unbounded
graph, we develop a novel method of viewing an important substructure of a cube
from a focus f . Consider the following:

1. We want to see more nodes close to f while retaining a sense of context to the

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 63

rest of the graph.

2. Let g be the node that is furthest away from f . It is important because f and
g are on opposite “sides” of the graph and can give us bounds on the structure.

3. By combining (1) and (2), we argue that we want to see progressively more
nodes as we move from g to f .

We will construct a subset of important nodes from focus f by starting with
g. Note that the address of g is the address of f with each bit flipped. From g

select adjacent nodes that di↵er in address from g only at either the leftmost or the
rightmost bit of the address property. This gives two nodes. For each of those nodes,
select nodes that di↵er in address only in either the leftmost yet-uncompared or the
rightmost yet-uncompared bit. This will select three more nodes: if g has address
00000, then the first nodes selected have addresses 00001 and 10000, and the second
set of nodes selected have addresses 10001, 00011, and 11000. Notice that 10001 is
selected by both 10000 and 00001. After n recursive layers of this procedure, we will
have n nodes that select only f . As we select nodes, we recursively assign a value
progressively further from zero, either positive or negative, depending on how many
leftmost bits and how many rightmost bits of the address have been changed from
g’s address.

This value becomes the “symmetry from boundary” metric (SB) (see Algorithm
3). For example, if g has address is 00000, the SB of the node with address 10001
will be 1� 1 = 0 and the SB of 11101 will be 3� 1 = 2. The V isibleSet created by
the algorithm specifies which nodes we want to see in our visualization.

7.3.6 Combining metrics

Figure 7.3 shows a visualization of a 6-cube generated by pairing SB with the shortest-
path distance metric and the property-based layout algorithm. This graph has focus
f with address 111111. The nodes selected by the SB algorithm are the visible set,
the SB is the x-axis, and shortest path distance from g is the y-axis.

Applying two metrics together like this can inform properties of the larger graph.
Once we have collapsed a graph into a visualization like Figure 7.3, we can apply
earlier techniques of simplifying large graphs. These techniques will introduce el-
lipses into our visualizations of large graphs without boundary. We could remove

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 64

Algorithm 3 Calculating the “symmetry from boundary” (SB) metric
f the focus
g node with negated address of f

V isibleSet {g}
i 1
while f 62 V isibleSet do

for each node n distance i from g do
if address of n di↵ers from address of g on only leftmost and/or rightmost
bits then

l # of leftmost bits changed from g to n (the “left-Hamming distance”)
r # of rightmost bits changed from g to n

n.SB (l � r)
Add n to V isibleSet

end if
end for
i (i + 1)

end while

some of the middle layers of the subgraph shown in Figure 7.3, which would give
us a natural way to reduce the visual complexity. Any visualization that uses the
above metrics can be attached to a slider in Gephi that changes the threshold of vis-
ibility. Using these sliders, we can move between visualizations of varying granularity.

Users should be able to grow and annotate graphs however they want. The above
metrics will give them ways of looking at general annotations that will define some
measure of distance or relationship between at least one node and all others. Our
particular operations are natural in a parallel environment because they depend on
a connected, highly symmetric graph. These metrics are clearly distinct, and there
may be properties that can be used other than address, which was accessible for the
families of graphs on which we focused.

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 65

Figure 7.3: The property-based layout algorithm applied to a 6-cube with focus
111111 using the SB metric and the shortest-path distance metric

7.4 Evaluation

We evaluate results by discussing what we do and do not see in their visualizations,
and we can discuss where we would ideally see ellipses.

7.4.1 Metrics

Shortest path distance

Applying a single-source shortest path algorithm to our graph from our focus is a
distance metric. In our visualization, we can interactively vary the weight of nodes
and visibility threshold of this metric. By adjusting this slider from 0 up to the largest
calculated distance, the user can see how the graph forms around the focus.

Figure 7.4 shows a 6-cube with nodes that have distance 2 or less from shown f .
This does look like a corner of a cube, but we have no sense of a greater context.

We can add a sense of context by assigning a second focus to another important
node. Figure 7.5 uses our property-based layout algorithm with distance from one
focus on the x-axis and distance from the other on the y-axis. Notice that these
visualizations of cubes will show a grid-like “slice” of the graph; several nodes are

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 66

Figure 7.4: A 6 cube showing nodes within distance 2 of the focus

overlapping in the visualization. This is promising: it stands to reason that the
overlapping nodes are equivalent with respect to the two foci. If we were dealing
with a larger graph than a 6-cube, we could reduce the visual complexity further by
applying our method from Chapter 6 for visualizing large graphs with boundary via
the three-way classification and ellipses.

Edit distance

Edit distance is a metric that treats the properties of nodes, such as address, as
strings. The address-based edit distance between two nodes is not a solely a function
of the graph itself, but of the semantics of the address property. This inconsistency
between the edit distance metric and the graph itself leads to problems in interpreting
the visualization.

Figure 7.6 shows the 6-cube with an edit distance metric applied. Here we are
showing nodes that have low edit distance ( 2) and nodes that have high edit
distance (� 4). We show these two sets of nodes in order to give the user a sense of
the global context around f . We note that there are some nodes that are shortest-path
distance greater than 2 that have edit distance of 2 or less. While this is part of the
reason we have selected to try edit distance—it provides a di↵erent, more flexible idea
of “closeness” in a graph—it turns out to be di�cult to understand in a visualization.
Because the address is an artifact of the shortest-path distance between nodes in the
graph, using a di↵erent-but-not-too-di↵erent measure of distance can be perplexing.

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 67

Figure 7.5: A 6 cube showing distance from two foci (in white)

It remains possible that edit distance could be useful for node properties that have a
deeper meaning than merely encoding the graph’s edge set.

First bit set

The “first bit set” measure applied to cubes decomposes the cube into a series of
smaller cubes. This can be useful for visualization to see the smaller substructures
that comprise the larger structure. Because our graphs were systematically grown, the
large graphs will duplicate the patterns of the smaller subgraphs. By understanding
the shape of communication of the smaller graphs, we can get a better picture about
the shape of the larger graph. Hypercubes are, after all, mathematically beautiful.
If we understand how a 3-cube works, it is not a great leap to consider the 4-cube.
By allowing us to see the decomposition into cubes, first bit set can remind us of the
simpler structure within, the structure that we already understand.

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 68

Strahler numbers

In our discussion of Strahler numbers, we have mentioned that they can only be
applied to trees and DAGs. We then hypothesized that, using a spanning tree induced
by the most heavily frequented edges in a parallel program communication graph, the
Strahler numbers can inform us about equivalence classes in large, structured graphs.
These classes would not merely be related to the structure of the graph, but the
actual communication that was occurring.

We could also find a spanning tree or spanning DAG of the graph as some function
of the way the graph was grown. This would guarantee that we were computing the
Strahler numbers given an important subtree of the graph even if we did not have
access to communication frequency data.

Figure 7.6: A 6-cube. We see nodes with edit distance not equal to 3

The SB metric

Figure 7.3 shows the SB metric applied to the 6-cube. This visualization could be
further simplified by using ellipses to remove some of its middle layers. In larger

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 69

graphs, this would be necessary in order to keep the visualization at a manageable
size. Otherwise, this metric combined with the shortest-path distance metric and our
property-based layout algorithm seems to give a good picture of the cube.

We get a sense of the context near the focus and, in decreasing amounts, nodes
that are further away. This extends all the way to g, the node that is furthest away
from the focus. This visualization significantly reduces the number of nodes we see
in an n-cube, from 2n = O(2n) to (n(n � 1)/2) + 1 = O(n2). With the addition
of ellipses, we can easily reduce this to O(n) nodes, which seems like a reasonable
goal. Seeing a O(1)-node visualization for an n-cube would suggest that we can fully
understand a cube without knowing its size, which seems like a flawed conjecture.
We cannot get a full picture of a cube without having a sense of the distance between
its “sides.”

The contextual ball

Algorithm 1, the contextual ball algorithm, is well-defined for any graphs that are
grown grammatically. Applying it to a cube gives us a series of smaller cubes around
our selected important nodes, such as the focus and its negation. Adjusting a and r

a↵ects the detail of the visualization by changing the size of these smaller cubes. As
a highly symmetric graph, each node of a cube has the same structural properties.
However, because our cubes are products of grammatical derivation, foci that first
appear in, for example, G1 or G will not be viewed the same way as “interior” nodes
with this algorithm. This can be corrected: if a + r is equal for two nodes in a cube,
their visualizations with both be (a + r)-cubes.

Figure 7.7 shows a näıve visualization of an 8-cube. The nodes in black represent
a contextual ball around some important nodes (arbitrarily 00000000 and 11111111).
Figure 7.8 then shows this same visualization, but abstracts the nodes that do not
appear in the contextual balls. This subgraph gives us an intuition about the com-
munication structure within a large cube. The two components visually appear close
together. This is a byproduct of our initial näıve layout, but it still hints at the
mathematical fact that, although our foci are as distant as possible, the shortest path
between them is still small.

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 70

Figure 7.7: An 8-cube. The black nodes represent contextual balls around key nodes.

7.4.2 Di↵erent kinds of graphs

We have developed a theory of visualization for graphs that have have a clear bound-
ary and intuitive planar representations. Our model denotes certain nodes as im-
portant in the local scope of the focal points, and other nodes as important in the
greater scope of the entire graph. Because these graphs have been grown according to
the highly structured specifications of our grammars or procedures, we can abstract
these important nodes into a smaller set of representative nodes. These nodes, chosen
to represent the graph’s greater structure but also to indicate its important details,
become the visible subset of nodes, the nodes we show in our visualization. Ellipses
are then added to signify abbreviated structures within the graph.

While this model seems to function at an intuitive level, we struggle to find the
important subsets of nodes with certain types of graphs. Notably, graphs that do

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 71

Figure 7.8: The same 8-cube as in the previous figure, but abstracting nodes that do
not appear in the contextual balls.

not have a clearly defined boundary or those that cannot easily be visualized in two
dimensions are problematic. If we attempt to, as suggested by our model and the
generalized fisheye view model, find nodes that were a priori of high importance in
a hypercube, we find ourselves lacking a satisfying solution.

In order to find such important nodes in these problematic graphs, we propose
the use of node metrics to limit the nodes that are visible. We do not expect to be
able to find one such metric that is universally useful over all of our grown classes of
graphs. Instead, by presenting a toolkit of metrics, we hope to o↵er new options for
visualizing these graphs.

We have also proposed a general method for finding a contextual subgraph around
any individual node in a graph that has been grown via a grammar or grammar-

CHAPTER 7. LARGE GRAPH LAYOUT WITHOUT BOUNDARY 72

like procedure. Harnessing the structural symmetries of graphs—even those that
we can not naturally visualize in two dimensions—allows us to determine a set of
fundamentally important nodes given foci and extremal points.

Chapter 8

Conclusion

To again use the quote from Mehra et al. [35]: “some objects, perhaps those less
familiar to us, have no obvious natural abstraction.”

Simplifying the visualizations of graphs that have no obvious visualizations in the
first place is a hard problem. Our main contribution to this is a set of tools for
growing graphs and then aiding in the visualization process of the di�cult families of
graphs. We have also put forth a general model for e↵ectively visualizing large, highly
structured graphs that have an obvious notion of boundary using our conceptual ball
algorithm. Our model provides a rationale for an approach to visualizing large graphs
with boundary. By finding the three-way classification of important/visible, impor-
tant/invisible, and unimportant/invisible vertices, we gain a condensed, abstracted
view that does not remove meaning from the large graphs.

Dimensional limitations

The harder problem that we faced is that of visualizing our large grown graphs that do
not have obvious boundaries. Our goal for these types of problems is to find a useful,
intuitive, and reasonably sized visualization of complicated structures that have no
clear two-dimensional visualization. If the large structure as a whole does not have
a natural projection onto two dimensions, it is unlikely that we are going to find a
bulletproof method of extracting easily visualizable subsets in a way that will clearly
indicate the patterns of the larger structure. It is this observation that prevents us
from o↵ering a unified theory on how to visualize all large, highly structured graphs.

73

CHAPTER 8. CONCLUSION 74

Although we are dealing with only a small subset of related graphs (notably those
that can be grown from grammars and procedures in highly structured ways), there
is likely not a universally successful way of reducing the visual complexity of these
graphs. However, we have demonstrated a method of finding contextual subgraphs
around key nodes for graphs. We are not guaranteed that these subgraphs will be
easy to visualize, but by restricting the parameters a and r in Algorithm 1, we will
likely be able to find subgraphs with e↵ective two-dimensional visualizations.

Additionally, we have put forth several metrics and a layout algorithm that could
feasibly be used to aid in the visualization process. The methods, while not exhaus-
tive, serve alongside the method of finding contextual subgraphs as a launching point
for visualization and for new metrics.

Users

As we have mentioned, there is no one successful solution to this problem. Addition-
ally, judging the success of a solution is nontrivial. As with any problem of perception
or human-computer interaction, the success of the end result will vary from person
to person. In implementing any of our visualization strategies in larger systems—be
they debuggers or otherwise—designers should take into account the specific needs of
users.

8.1 Future work

Our work was limited in scope, but there are several avenues in which this research
could be expanded.

8.1.1 Parallel debuggers

An obvious extension of this research would be to create a better parallel debugger.
Harnessing and honing the methods and metrics that we used in this research could
contribute to the creation of a parallel program debugger that shows ellipses-based
visualizations of complicated process communication graphs.

We can induce the communication graph of a parallel program given its post-
mortem log file. By visualizing the ensuing graph, we can learn a few things: first, we

CHAPTER 8. CONCLUSION 75

can see what the program’s communication looks like around our focus, the process
in question. Second, we can ensure that the entire graph appears as it should given
the implemented algorithms. Programmers should have a good idea of the “shape”
of the algorithms that they implement, or how the processes are meant to communi-
cate. Books on parallel algorithms tend to include pictures of algorithm topologies,
often with ellipses included. By matching the log-based visualization with the actual
topology, the programmer can quickly decide whether there are serious bugs in the
program’s communication structure.

8.1.2 Identifying graph topologies

In order for parallel debuggers to successfully use our visualization techniques, they
must have some way to detect graph topologies. Without knowing the topology, we
would be unable to use the properties that have been grown with the graph, thus
significantly hampering the usefulness of our visualization techniques. We have seen
an example of a debugger that uses simple, predefined mesh and torus topologies
[28] and a method for debugging that forces the programmer to provide a topological
specification for the program [29]. Neither of these is optimal, as the former method
relies on simple (and small) graphs, and the latter method forces the programmer to
do a lot of extra work.

In our work, we have grown useful graphs using grammars and special procedures.
In order to achieve the identification task at hand, we hope to find an inverse of our
grammars and procedures: an algorithm that can e↵ectively take a large, unidentified
graph and learn the productions that would create it. While this task seems daunting,
our restriction of these graphs to those that appear commonly in parallel programming
should prove to be helpful. The programmer may also be able to provide a “seed”
that aids the algorithm in finding the graph’s appropriate origin. For example, if
the programmer knows that his program implements a shu✏e network, he could tell
the debugger to search for graph topologies based on the idea of permutation. Once
we have identified how a graph was grown, we can grow the properties with it, and
proceed with our visualization strategies.

One possible stumbling point may be that if the parallel program contains commu-
nication bugs, then the topology of the induced communication graph will not mimic
the programmer’s desired topology. There are two ways to handle this problem. First,
we can ignore it and identify the graph topology as programmed. By visualizing this

CHAPTER 8. CONCLUSION 76

topology, the programmer should be able to spot the communication errors that cause
the program to deviate from the desired algorithms. Alternatively, we could attempt
to find a fault-tolerant means of topology identification that corrects for the commu-
nication error and shows the user a guess at the correct topology, identifying the areas
where the program deviates from the displayed topology. The latter method sounds
significantly more di�cult, and would likely come as an extension to the former.

The work in this thesis should provide a sound basis for pursuing any of these
extensions. Parallel programmers will want to see e↵ective visualizations of their
designs, and we have provided foundations toward that goal.

Appendix A

Large figures

Figure A.1: An example of a simple clog file. This is from a program that approxi-
mates ⇡, run with only 2 processes.

GUI_LIBDIR is set. GUI_LIBDIR = /home/cs-students/ssr2/mpich2-install/lib
CLOG-02.44
is_big_endian=true
is_finalzed=true
block_size=65536
num_buffered_blocks=128
max_comm_world_size=2
max_thread_count=1
known_eventID_start=0
user_eventID_start=600
known_solo_eventID_start=-10
user_solo_eventID_start=5000
known_stateID_count=300
user_stateID_count=0
known_solo_eventID_count=2
user_solo_eventID_count=0
commtable_fptr=66560

77

APPENDIX A. LARGE FIGURES 78

RecHeader[time=1.9073486328125E-6, icomm=0, rank=1, thread=0, rectype=11]
RecTshift[timeshift=-0.0]
RecHeader[time=1.9073486328125E-6, icomm=0, rank=0, thread=0, rectype=11]
RecTshift[timeshift=-0.0]
RecHeader[time=7.867813110351562E-6, icomm=0, rank=1, thread=0, rectype=9]
RecComm[etype=CommWorldCreate, icomm=0, rank=1, wrank=1,
gcomm=2127016245-1.304385520082285E9-siri]

RecHeader[time=7.867813110351562E-6, icomm=0, rank=1, thread=0, rectype=9]
RecComm[etype=CommSelfCreate, icomm=2, rank=0, wrank=1,
gcomm=256982527-1.304385520084197E9-siri]

RecHeader[time=8.821487426757812E-6, icomm=0, rank=0, thread=0, rectype=9]
RecComm[etype=CommWorldCreate, icomm=0, rank=0, wrank=0,
gcomm=2127016245-1.304385520082285E9-siri]

RecHeader[time=8.821487426757812E-6, icomm=0, rank=0, thread=0, rectype=9]
RecComm[etype=CommSelfCreate, icomm=1, rank=0, wrank=0,
gcomm=341175986-1.304385520082293E9-siri]

RecHeader[time=8.821487426757812E-6, icomm=0, rank=0, thread=0, rectype=4]
RecDefConst[etype=-201, value=-1, name=MPI_PROC_NULL]
RecHeader[time=1.1920928955078125E-5, icomm=0, rank=0, thread=0, rectype=4]
RecDefConst[etype=-201, value=-2, name=MPI_ANY_SOURCE]
RecHeader[time=1.1920928955078125E-5, icomm=0, rank=0, thread=0, rectype=4]
RecDefConst[etype=-201, value=-1, name=MPI_ANY_TAG]
RecHeader[time=4.482269287109375E-5, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=54]
RecHeader[time=4.482269287109375E-5, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=55]
RecHeader[time=4.601478576660156E-5, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=54]
RecHeader[time=4.696846008300781E-5, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=55]
RecHeader[time=4.696846008300781E-5, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=48]
RecHeader[time=4.696846008300781E-5, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=49]

APPENDIX A. LARGE FIGURES 79

RecHeader[time=4.792213439941406E-5, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=48]
RecHeader[time=4.792213439941406E-5, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=49]
RecHeader[time=4.887580871582031E-5, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=12]
RecHeader[time=20.354533910751343, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=12]
RecHeader[time=20.354538917541504, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=13]
RecHeader[time=20.354540824890137, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=24]
RecHeader[time=20.35454487800598, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=13]
RecHeader[time=20.354549884796143, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=24]
RecHeader[time=20.354556798934937, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=25]
RecHeader[time=20.354556798934937, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=12]
RecHeader[time=20.354556798934937, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=25]
RecHeader[time=22.2727370262146, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=12]
RecHeader[time=22.27273988723755, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=13]
RecHeader[time=22.272742986679077, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=13]
RecHeader[time=22.272742986679077, icomm=0, rank=0, thread=0, rectype=5]
RecBare[etype=-9]
RecHeader[time=22.272745847702026, icomm=0, rank=1, thread=0, rectype=5]
RecBare[etype=-9]
RecHeader[time=22.272774934768677, icomm=0, rank=0, thread=0, rectype=2]
RecDefState[stateID=6, startetype=12, finaletype=13, color=cyan,
name=MPI_Bcast, format=null]

APPENDIX A. LARGE FIGURES 80

RecHeader[time=22.272775888442993, icomm=0, rank=0, thread=0, rectype=2]
RecDefState[stateID=12, startetype=24, finaletype=25,
color=MediumPurple, name=MPI_Reduce, format=null]

RecHeader[time=22.272775888442993, icomm=0, rank=0, thread=0, rectype=2]
RecDefState[stateID=24, startetype=48, finaletype=49, color=white,
name=MPI_Comm_rank, format=null]

RecHeader[time=22.27277684211731, icomm=0, rank=0, thread=0, rectype=2]
RecDefState[stateID=27, startetype=54, finaletype=55, color=white,
name=MPI_Comm_size, format=null]

RecHeader[time=22.272777795791626, icomm=0, rank=0, thread=0, rectype=3]
RecDefEvent[etype=-9, color=orange, name=MPE_Comm_finalize, format=null]
RecHeader[time=22.272789001464844, icomm=0, rank=0, thread=0, rectype=2]
RecDefState[stateID=280, startetype=560, finaletype=561,
color=maroon, name=CLOG_Buffer_write2disk, format=null]
RecHeader[time=1.0E8, icomm=0, rank=0, thread=0, rectype=0]
End Of File
Total ByteSize of the logfile = 2080

APPENDIX A. LARGE FIGURES 81

Figure A.2: A screen capture from jumpshot, showing the logfile in Figure A.1

Bibliography

[1] Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J.,
Hanrahan, P., and Tversky, B. Designing e↵ective step-by-step assembly
instructions. ACM Transactions on Graphics (TOG) 22, 3 (2003), 828–837.

[2] Agrawala, M., and Stolte, C. Rendering e↵ective route maps: improving
usability through generalization. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques (New York, NY, USA, 2001),
SIGGRAPH ’01, ACM, pp. 241–249.

[3] Akl, S. Parallel sorting algorithms. Academic Pr, 1985.

[4] Auber, D., Delest, M., Domenger, J. P., Duchon, P., and Fdou,
J. M. New strahler numbers for rooted plane trees. In Vienna University of
Technology, Birkhauser (2004), pp. 203–215.

[5] Bailey, D. A., Cuny, J. E., and Loomis, C. P. Paragraph: Graph editor
support for parallel programming environments. International Journal of Parallel
Programming 19 (1990), 75–110. 10.1007/BF01407832.

[6] Bastian, M., Heymann, S., and Jacomy, M. Gephi: An open source
software for exploring and manipulating networks. In Proceedings of the Inter-
national AAAI Conference on Weblogs and Social Media (2009), ICWSM ’09.

[7] Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G. Graph
Drawing: Algorithms for the Visualization of Graphs, 1st ed. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1998.

82

BIBLIOGRAPHY 83

[8] Brodlie, K. W., Duke, D. J., (editors), K. I. J., Beermann, D., Mun-
zner, T., and Humphreys, G. Scalable, robust visualization of very large
trees, 2005.

[9] Carlsson, G., Cruthirds, J., Sexton, H., and Wright, C. Interconnec-
tion networks based on a generalization of cube-connected cycles. IEEE Trans-
actions on Computers 34 (1985), 769–772.

[10] Ce, Y., Zhen, X., Ji-zhou, S., Xiao-jing, M., Yan-yan, H., and Hua-
bei, W. Paramodel: a visual modeling and code skeleton generation system for
programming parallel applications. SIGPLAN Not. 43, 4 (2008), 4–10.

[11] Chan, A., Gropp, B., and Lusk, R. Performance
visualization for parallel programs: Viewers, May 2011.
http://www.mcs.anl.gov/research/projects/perfvis/software/
viewers/index.htm.

[12] Cuny, J., Forman, G., Hough, A., Kundu, J., Lin, C., Snyder, L.,
and Stemple, D. The ariadne debugger: scalable application of event-based
abstraction. In In Proc. ACM SIGPLAN/ONR Workshop on Parallel and Dis-
tributed Debugging, ACM SIGPLAN Notices (1993), pp. 85–95.

[13] Dongarra, J., Gannon, D., Fox, G., and Kennedy, K. The impact of
multicore on computational science software, 2007.

[14] Dongarra, J., Otto, S., Snir, M., and Walker, D. An introduction to
the MPI standard. Communications of the ACM (1995).

[15] Efe, K. Embedding large complete binary trees in hypercubes with load bal-
ancing, 1996.

[16] Feng, T. A survey of interconnection networks. Computer 14, 12 (1981), 12–27.

[17] Furnas, G. W. Generalized fisheye views. SIGCHI Bull. 17, 4 (1986), 16–23.

[18] Furnas, G. W. A fisheye follow-up: further reflections on focus + context. In
Proceedings of the SIGCHI conference on Human Factors in computing systems
(New York, NY, USA, 2006), CHI ’06, ACM, pp. 999–1008.

BIBLIOGRAPHY 84

[19] Gait, J. A probe e↵ect in concurrent programs. Softw. Pract. Exper. 16 (March
1986), 225–233.

[20] Gibbons, A., and Rytter, W. E�cient parallel algorithms. Cambridge Univ
Pr, 1989.

[21] Herman, I., Delest, M., and Melanon, G. Tree visualisation and naviga-
tion clues for information visualisation, 1998.

[22] Herman, I., Marshall, M. S., Melancon, H. M., Duke, D. J., Delest,
M., and p. Domenger, J. Skeletal images as visual cues in graph visualization.
In in Data Visualization ’99, Proceedings of the Joint Eurographics and IEEE
TCVG Symposium on Visualization (1999), Springer–Verlag, pp. 13–22.

[23] Herman, I., Melancon, G., and Marshall, M. S. Graph visualization
and navigation in information visualization: A survey. IEEE Transactions on
Visualization and Computer Graphics 6 (2000), 24–43.

[24] Himsolt, M. Gml: A portable graph file format, April 2011.
http://www.fim.uni-passau.de/fileadmin/files/
lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf.

[25] Hu, Y. E�cient, high-quality force-directed graph drawing. Mathematica Jour-
nal 10, 1 (2005), 37–71.

[26] Huang, X., and Lai, W. Clustering graphs for visualization via node similar-
ities. J. Vis. Lang. Comput. 17, 3 (2006), 225–253.

[27] Huband, S., and McDonald, C. Debugging parallel programs using in-
complete information. Cluster Computing, International Workshop on 0 (1999),
278.

[28] Huband, S., and McDonald, C. Depict: A topology-based debugger for mpi
programs. In High-Level Parallel Programming Models and Supportive Environ-
ments, F. Mueller, Ed., vol. 2026 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2001, pp. 109–121. 10.1007/3-540-45401-2 9.

BIBLIOGRAPHY 85

[29] Huband, S., and McDonald, C. Parallel program debugging by specification:
Research articles. Concurr. Comput. : Pract. Exper. 16 (May 2004), 551–585.

[30] Janecek, P., and Pu, P. A framework for designing fisheye views to support
multiple semantic contexts. In AVI ’02: Proceedings of the Working Conference
on Advanced Visual Interfaces (New York, NY, USA, 2002), ACM, pp. 51–58.

[31] Kimelman, D., Leban, B., Roth, T., and Zernik, D. Reduction of visual
complexity in dynamic graphs. In Graph Drawing, R. Tamassia and I. Tollis,
Eds., vol. 894 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 1995, pp. 218–225. 10.1007/3-540-58950-3 373.

[32] Krammer, B., Bidmon, K., Müller, M. S., and Resch, M. M. Marmot:
An mpi analysis and checking tool, 2004.

[33] Kranzlmüller, D., Grabner, S., and Volkert, J. Event graph visual-
ization for debugging large applications. In SPDT ’96: Proceedings of the SIG-
METRICS symposium on Parallel and distributed tools (New York, NY, USA,
1996), ACM, pp. 108–117.

[34] Lamport, L. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 (1978), 558–565.

[35] Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., and Mitra,
N. Abstraction of man-made shapes. ACM Transactions on Graphics (TOG)
28, 5 (2009), 137.

[36] Melanon, G., and Herman, I. Dag drawing from an information visualiza-
tion perspective. In Data Visualization ’00 (1999), Springer-Verlag, pp. 3–12.

[37] Minnick, L. Generalized forcing in aperiodic tilings. Undergraduate thesis at
Williams College, 1998.

[38] Pauly, M., Mitra, N., Wallner, J., Pottmann, H., and Guibas, L.
Discovering structural regularity in 3D geometry. ACM Transactions on Graph-
ics (TOG) 27, 3 (2008), 1–11.

BIBLIOGRAPHY 86

[39] Prusinkiewicz, P., and Lindenmayer, A. The Algorithmic Beauty of Plants
(The Virtual Laboratory). Springer, Oct. 1991.

[40] Quigley, A., and Eades, P. Fade: Graph drawing, clustering, and visual
abstraction. In Graph Drawing, J. Marks, Ed., vol. 1984 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2001, pp. 77–80. 10.1007/3-
540-44541-2 19.

[41] Quinn, M. Designing e�cient algorithms for parallel computers. 1986.

[42] Rozenberg, G., and Salomaa, A. Mathematical Theory of L Systems. Aca-
demic Press, Inc., Orlando, FL, USA, 1980.

[43] Saad, Y., and Schultz, M. Topological properties of hypercubes. IEEE
Transactions on Computers 37 (1988), 867–872.

[44] Sarkar, M., and Brown, M. H. Graphical fisheye views of graphs. In
CHI ’92: Proceedings of the SIGCHI conference on Human factors in computing
systems (New York, NY, USA, 1992), ACM, pp. 83–91.

[45] Shafi, A., Carpenter, B., and Baker, M. Nested parallelism for multi-
core hpc systems using java. Journal of Parallel and Distributed Computing 69,
6 (2009), 532 – 545.

[46] Sipser, M. Introduction to the Theory of Computation. International Thomson
Publishing, 1996.

[47] Wilson, K. Problems in physics with many scales of length. Scientific American
241, 2 (1979), 158–179.

[48] Wu, A. Y. Embedding of tree networks into hypercubes. Journal of Parallel
and Distributed Computing 2, 3 (1985), 238 – 249.

