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1. Introduction

Computing performance has hit a wall [23]. While the number of transistors that can fit in

a given area continues to increase, power constraints have led to the rise of dark silicon as

many of those transistors must be left unused. Chip manufacturers have responded to this

voltage scaling crisis by producing multi-core chips and enabling so-called “turbo modes”

that power down most of the processor in order to run a small fraction of its transistors

(about 3% on modern cores) at their maximum clock frequency without overheating. While

using multiple cores to compute in parallel is one path to increased performance under

these power constraints, we currently lack languages that would make parallel code easy to

write as well as programmers who are well-versed in the principles and pitfalls of parallel

programming [6]. Even the best e↵orts at increasing the parallelization of computation are

unlikely to yield orders-of-magnitude improvement in the near future, as they must wring

parallelism out of explicitly sequential code. Thus, as a direct result of the power utilization

wall imposed by the breakdown of voltage scaling, chip space is becoming a less valuable

resource while power is growing more important.

There are several ways of trying to exploit this power-space tradeo↵. One of the more

promising paths is pairing a general purpose processor (GPP1) with a set of tightly-coupled

heterogeneous units, each of which is designed to increase the energy-e�ciency of execut-

ing a target piece of code. UCSD’s conservation cores (c-cores) project is a particularly

e↵ective and well-researched implementation of this heterogeneous core-GPP coupling [23].

However, the system that the UCSD researchers describe requires that chips be printed in a

conventional manner with a set of inflexible application specific integrated circuits (ASICs)

on board. The mostly static nature of these conservation cores would make them less useful

for many users (who may not use the applications that the generated cores target) and

shorten their utility-lifespan, as the target codebase changes and invalidates the hardware

designed for the outdated software.

Field programmable gate arrays (FPGAs) represent a compromise between GPPs and

ASICs. While FPGAs are generally less space e�cient and less computationally powerful

1
A table of acronyms can be found on page 38.
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than both GPPs and ASICs, they are more flexible than ASICs and, when compiled to

target a specific set of code, can provide roughly 10⇥ performance and power gains over

GPPs [3]. Unlike earlier generations of FPGAs, systems like the Xilinx Zynq, which pairs

an ARM processor with an FPGA on a single chip, are fast, reconfigurable, and tightly-

coupled enough to be used for real-time partnered computation [27]. Therefore, Zynq and

other hybrid FPGA-GPP chips are an ideal platform for the conservation cores concept,

as they could yield significant performance benefits without locking users into a set of

immutable circuits.

In the future, every processor could be a hybrid, pairing a GPP with a reconfigurable

FPGA co-processor. Ideally, the GPP would execute as little code as possible, with most

computation performed on the more e�cient FPGA. Further, one can imagine that smart-

phone processors will be coupled to an FPGA, and software updates and application down-

loads will include not only application code, but also configurations for FPGA regions that

can e�ciently execute that code. It would even be possible for a phone to tailor its FPGA

configurations to its owner’s usage patterns by periodically running self-analysis and recom-

piling its hardware.

This project represents the first small steps towards that future. In it, we describe a

runtime reconfigurable datapath with a simple user interface that is implemented on the

Zynq’s programmable logic. While FPGA hardware has made significant advances and is

now highly capable, the software and documentation supporting them remain byzantine

[27], making FPGAs and the new Zynq hardware in particular di�cult to use. Therefore,

in this work we aim to give a proof-of-concept and roadmap for a coarser-grained FPGA

co-processor that exposes FPGA e�ciency and flexibility while hiding its complexity.

The remainder of this work is organized as follows. Chapter 2 talks about previous

research on energy e�ciency; comparisons between GPPs, ASICs, and FPGAs; automated

circuit design and analysis; heterogeneous co-processor systems; and systems on the Zynq

platform. Chapter 3 presents a typical Zynq project workflow by walking through the

creation and testing of a circuit that computes Hailstone sequence lengths. The results of

the tests hint at the performance capabilities of the Zynq system. In Chapter 4, we discuss

the design and goals for the runtime reconfigurable datapath, and we present experimental

performance results in Chapter 5. Chapter 6 outlines some of the options for further work

to enhance the capability of an FPGA co-processor. Finally, Chapter 7 is a brief summary.



2. Previous Work

Previous research related to this work can be grouped into four main categories. First, there

are a few papers that describe the increasing importance of energy e�ciency compared to

chip space caused by the breakdown of traditional voltage scaling. Second, there is a large

body of research focused on the relative e�ciency of computation performed on GPPs,

FPGAs, and ASICs. Third, there have been a number of attempts to e�ciently automate

circuit design, synthesis, and analysis, using design space exploration and various tuning

heuristics to manage the trade-o↵ between compilation time and circuit quality. Finally,

many researchers have designed and tested systems that integrate GPPs with specialized,

heterogeneous hardware accelerators using both compile-time code analysis and runtime

computation partitioning. We consider those contributions here.

2.1 Dark Silicon and the Importance of Energy E�ciency

In a pair of important papers, Taylor of UCSD describes the utilization wall imposed by

physical limitations on the amount of voltage required to avoid gate leakage [21, 22]. Previ-

ously, voltage scaled down with the size of the transistors, meaning that from one generation

to the next, chip makers could add more transistors without increasing power requirements.

In 2005, however, process size finally decreased to the point that transistors became too

small to allow linear voltage scaling without gate leakage, so the voltage required for each

transistor has remained roughly constant. Therefore, more power is required per unit area,

so not all of the transistors can be operating under the original power budget. The result

of this utilization wall is dark silicon, and an era in which industry “progress is measured

by improvements in transistor energy e�ciency” instead of transistor speed and count.

Indeed, given the realities of dark silicon, chip area is decreasingly valuable while energy ef-

ficiency is a vital design parameter. Taylor describes four possible responses to dark silicon:

(1) shrinking chip sizes to increase silicon utilization; (2) dynamically managing chip-wide

power usage by under-clocking parts of the chip to compute as much as possible while

staying within the power budget; (3) using the dark silicon to house a set of specialized

6
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co-processors each of which can much more e�ciently (in terms of time, power, or both)

perform necessary computations; or (4) hoping for a significant advance in semiconductor

technology that would make the voltage-scaling wall irrelevant. Taylor is most optimistic

about the use of specialized co-processors and emphasizes the importance of making careful

decisions about how to best use “extra” chip space for more e�cient computation.

2.2 E�ciency Comparisons Between GPPs, FPGAs, and ASICs

In 2010, Hameed et al. analyze the ine�ciencies of GPPs compared to ASICs [8]. Most

notably, they find that GPPs spend over 90% of their computation energy on overhead

operations (such as instruction fetch and decode) that can be completely eliminated by

specialized hardware. As a result, ASICs are generally around 500 times more energy

e�cient than GPPs. Beyond that computational overhead, ASICs are still over 50 times

more e�cient than GPPs because they can exploit parallelism, group complex instructions

that are often used together, and make use of specialized hardware specifically designed

for a target application. Overall, without custom hardware and instructions, computation

energy is still dominated by overhead, with less than 10% going to the functional units.

The authors’ “inescapable conclusion is that truly e�cient designs will require application-

specialized hardware.”

Figure 2.1: Typical GPP energy usage. Data from Hameed et al. [8]

Amdahl’s Law is an important checkpoint on claims of performance improvements when

using parallel techniques. Hill and Marty of University of Wisconsin-Madison refine the

thinking behind Amdahl’s Law in speedup formulae tuned for multicore processors that

are symmetric, asymmetric, or dynamic [10]. Symmetric processors dedicate the same
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resources to each multicore (e.g. 16 identical 4-resource multicores on a 64-resource chip),

asymmetric processors have di↵erently sized cores (e.g. one 16-resource core and 24 2-

resource cores), and dynamic processors can be run-time reconfigured to run as one powerful

core for sequential processing or as a set of possibly asymmetric smaller cores for parallel

processing. Though these multicores do not have application specific hardware, asymmetric

multicores represent a similar approach: trying to break up the larger computation into

pieces that can be handled by optimally-sized sections of hardware. While the authors

emphasize that even in the multicore era, sequential speedups are crucially important, and

targeting those bottlenecks can still provide valuable e�ciency gains, they find that orders-

of-magnitude gains come only when large amounts of potential parallelism (>95%) can be

exploited. Another key conclusion is that even when some decisions or configurations may

seem locally ine�cient, they can be globally e�cient if they reduce total chip idle time.

Overall, dynamic multicore designs outperform asymmetric multicores, and asymmetric

multicore designs perform better than symmetric ones.

Kuon and Rose use detailed experimental measurements to examine the area, energy,

and delay gaps between FPGAs and ASICs [12]. Overall, they find FPGA logic requires

roughly 35⇥ more area (mostly due to routing), 14⇥ more power, and a 3-4⇥ longer critical

path. Most modern FPGAs have some hard logic blocks (arithmetic logic units (ALUs),

random access memory (RAM) blocks, etc.), which can reduce those gaps to around 18⇥
for area, and 8⇥ for power, depending on how much of the application hardware can be

mapped to those hard blocks. The cost of those improvements is the loss of flexibility on

the FPGA, as fabric space must be dedicated to the hard blocks, whether or not they are

used.

Chung et al. provide a general survey of the benefits and trade-o↵s associated with

integrating unconventional cores (u-cores) with GPPs [3]. The work focuses on energy

e�ciency, rather than pure performance or speed, noting that power consumption and

I/O bandwidth are the two main performance bottlenecks for modern computation. The

authors evaluate three di↵erent types of u-cores (ASICs, FPGAs, and GPGPUs) paired

with GPPs, modeling a situation in which sequential operations are performed on the GPP

and parallel operations are mapped to the u-core. They find that u-cores almost always

improve the energy e�ciency of computation, especially as the amount of parallelism in the

target application increases. In addition, the benefits of u-core use are heavily dependent

on o↵-chip bandwidth trends, as bandwidth ceilings quickly become a limiting factor for

extremely fast custom logic; if I/O and bandwidth improvements continue to lag behind

logic improvements, FPGAs will be able to o↵er performance that is closer to that of ASICs

than their relative computational e�ciency would suggest. The authors’ results show that

ASICs o↵er both the highest performance and most power e�ciency, but that ASICs are
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expensive to develop and designed around a single set of target applications. FPGAs, on

the other hand, can provide significant e�ciency gains over GPPs alone while o↵ering more

flexibility (and thus a longer utility life-span) than ASICs.

2.3 Automated Circuit Design, Synthesis, and Analysis

In their 1999 paper, Aditya et al. describe a system that automates the design of application-

specific very long instruction word (VLIW) and explicitly parallel instruction computing

(EPIC) processors and instruction sets to e�ciently implement an input set of target code

[2]. More than simply outputting one feasible design, however, the authors’ program-in-chip-

out (PICO) system performs extensive design-space exploration to handle the “intelligent,

quantitative, cost-performance trade-o↵s” for customized architecture. The PICO system

has three main components: (1) a design-space explorer, which uses various heuristics

and search strategies to find close-to-optimal architectures; (2) an architecture synthesis

sub-system which takes the resulting abstract architecture and devises a pseudo-optimal

concrete architecture and compiler target; and (3) a retargetable compiler which generates

the best possible instruction set and application code for the given application and processor

design passed to it. PICO uses the three subsystems in a cyclical fashion, as the compiler’s

output and execution time estimates are used by the design-space explorer as input to the

search heuristics looking for optimal architectures. The authors’ preliminary tests show that

processors with heterogeneous functional units are almost always more e�cient in terms of

size and performance than processors which have only homogeneous functional units.

PRML, a partially reconfigurable modeling language, enables designers to e�ciently

explore the design space for a given application, using di↵erent area and performance metrics

to tailor the tradeo↵s to their workload [11]. In many ways, PRML seems to be a modern

iteration of the automated synthesis and design space exploration discussed by Aditya

et al.. While those authors were trying to generate e�cient designs for VLIW processors,

however, Kumar and Gordon-Ross direct their automation and design space exploration

towards partially reconfigurable FPGAs. One of the biggest points of emphasis is the

explicit tradeo↵ analysis in PRML’s architecture. There are always going to be tradeo↵s

between runtime and quality of output for the modeling, and area and performance in

the final design. Making those tradeo↵s easy to manage can only help designers. The

basic internal tradeo↵ analysis uses a generated partially reconfigurable architecture and

compares area, performance, and inter-region communication overheads, and the system

gives the user a set of tuning parameters to adjust which of those tradeo↵s the automated

design prioritizes.

Sankar and Rose examine the trade-o↵ between FPGA compile time and routing quality
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[20]. Longer compilation times represent a substantial impediment to many of the primary

applications for FPGAs including rapid prototyping, emulation, and custom computation.

Using techniques such as recursive clustering of hardware blocks to build up a design and

then recursive routing and placement of those blocks starting with the full design, the

authors find that designs within one-third of optimal can be achieved in less than 10%

of the compilation time. Any real-time compilation is computation-intensive and likely to

produce relatively low quality circuits. However, perhaps a more important application is

the use of fast routing and placement to estimate the quality of a more optimal design. The

authors report that with under 10 seconds of runtime, their system can compile designs

whose wire lengths can be used to estimate, with roughly 5% error, optimal circuit wire

lengths.

More recently, in 2010 Lavin et al. of Brigham Young University created RapidSmith, a

system for automated FPGA design that aims to significantly speed up FPGA compilation

times [13, 14, 15, 16]. Their principal improvement comes from the creation and use of

pre-compiled and internally routed macro-blocks which can be combined quickly without

requiring further low-level verification. Experimental results indicate that the circuits de-

signed in this manner provide performance only 25% worse than that of hand-tuned circuits,

while development time is reduced by 67%. Further, the researchers replace the default Xil-

inx placer and router, which handle the hard macros very poorly, with HMFlow [14], which

yields a 10-50⇥ speedup compared to the Xilinx tools in configuration time. However, the

circuits that come out of HMFlow are limited to 50% of the resources on the FPGA; they

are also 2-4⇥ slower than those produced by the default tools because not re-compiling

internal routing necessarily limits optimization.

2.4 Systems with Heterogeneous Co-processors

Several early projects in this area targeted very small reconfigurable accelerators that act

only as a single functional unit.

Razdan and Smith describe using programmable hardware units to accompany a GPP

for a broad range of applications [19]. The programmable functional units (PFUs) developed

by the authors implement a set of combinational functions within a single instruction cycle

time. A new reduced instruction set computing (RISC) instruction selects from up to 2048

possible PFU configurations and then returns the appropriate result. At a higher level,

the authors’ approach is very applicable to more modern hardware: they use compile-time

analysis to find pieces of code which can be implemented more e�ciently on programmable

hardware (taking into account all reconfiguration overhead) and develop a toolchain that

will automatically implement that reconfiguration.
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The CHIMAERA system is extremely similar to Razdan and Smith’s, but the hardware

is slightly more powerful: Ye et al. use compile-time analysis and the addition of one new

instruction to the instruction set to map sequences of operations to one reconfigurable

functional unit [28]. The authors find that the greatest performance gains come not from

simple shift operations (which are quite easily mapped to the reconfigurable unit), but

rather from reconfigurable unit operations that replace branching logic by implementing

speculative execution in hardware.

Hauser and Wawrzynek’s GARP system pairs a MIPS processor with an FPGA co-

processor [9]. Though the hardware available at the time was much less capable than

modern systems (the FPGAs were too small to encode entire programs and could only

hold one configured circuit at a time), the main issues that concern the authors remain

relevant: finding pieces of code that will be more e�cient on an FPGA, handling the I/O,

and achieving optimal runtime allocation of computation. Simulations suggest that for

certain applications, FPGAs were much more e�cient than the most powerful GPPs of the

period.

More recently, in a 2005 paper Clark et al. discuss a framework to integrate customized

instructions for a configurable compute accelerator (CCA) into the instruction set for a

GPP [4]. The authors’ main innovation is a compiler that integrates a user-specified CCA

configuration into compile-time analysis, allocating appropriate code blocks to the CCA.

While most of the analysis is done at compile-time, the framework also uses run-time anal-

ysis to create and branch to the code necessary for the CCA. Determining when using the

CCA will improve e�ciency given the overhead involved and overlapping code subgraphs

that could otherwise be mapped to the CCA is crucially important and extremely di�cult.

Quinn et al. describe the Dynamo system, a successful implementation of runtime par-

titioning for platforms that have a mix of GPPs and FPGAs; it handles the assignment,

compilation, and execution, leaving only pipeline selection (i.e. designing e�cient circuits

and source code) to the user [18]. The system automatically selects the most e�cient combi-

nation of hardware and software and generates source code to implement that partitioning.

Dynamo uses pre-compiled hardware implementations so that it can work dynamically and

e�ciently—having to generate those designs at runtime would slow down processing. Along

with the hardware implementation specifications themselves, performance profiles are pre-

computed, allowing the system to accurately decide whether hardware or software would

be more e�cient for a given step. The researchers conclude that every phase of processing

has a crossover point between smaller image sizes (which are more e�ciently processed in

software) and larger ones (for which the speedup of the FPGA outweighs the overhead).

Similarly, shorter pipelines should be handled entirely in software, while longer pipelines

should mostly be handled by the FPGA with only simple computational steps remaining in
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software.

In 2010, Venkatesh et al. from UCSD explored the benefits of pairing specialized con-

servation cores (c-cores) with GPPs, significantly reducing the power consumption for fre-

quently executed, energy intensive code [23]. The authors’ primary focus is not increased

performance, but rather similar performance with lower energy consumption: “If a given

computation can be made to consume less power at the same level of performance, other

computations can be run in parallel without violating the power budget.” The voltage-

scaling utilization wall has made energy e�ciency, rather than pure computational speed,

the primary bottleneck. Because they target energy e�ciency, rather than computation

speed, c-cores can be used for a much broader set of applications or code blocks, even when

there is no available parallelism to exploit. Even when there is not parallelism to be ex-

ploited (or when acceleration via increased parallelism is not the goal), using c-cores simply

to make computation more energy e�cient is worthwhile because it allows more of the chip

to be functional at any given time. The c-core system, as described, contains multiple tiles,

each of which contains one GPP and several heterogeneous c-cores as shown in Figure 2.2.

The researchers’ toolchain generates c-cores by profiling a target workload, selecting “hot”

code regions, and automatically synthesizing c-core hardware to implement the code block.

The compiler must be extended to use available c-cores on applicable code segments, while

executing other code on the GPP. The authors also discuss “patchable” c-cores, which have

limited flexibility (increasing their lifetime and the amount of code they can execute) but

incur significant (2⇥) area and power consumption overhead. Simulations suggest that a

system using only 18 c-cores can have a 16⇥ improvement in energy consumption for code

that can be executed on the c-cores, resulting in a reduction of nearly 50% for the energy

consumption of the target applications as a whole.

Figure 2.2: A diagram showing (a) a c-core chip with multiple tiles, (b) the physical floorplan
for an individual tile, and (c) the logical layout of the interconnects within a tile. Figure
from Goulding-Hotta et al. [7]
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GreenDroid is an evolution of the c-cores paradigm targeting the Android platform [7].

Android is a good target platform because it has a relatively well-defined set of basic ap-

plications, short hardware update cycle that mitigates the e↵ect of out of date c-cores, and

(as with any mobile platform) a heightened emphasis on power savings. The experimental

results show an 11⇥ energy savings through the use of hundreds of di↵erent c-cores (com-

pared to only 18 in the authors’ initial research [23]) that are able to cover roughly 95%

of the test Android-based workload. The automated toolchain generates a system design

with 16 tiles, each of which has a general purpose central processing unit (CPU), a large L1

cache (used for communication with the c-cores), I/O ports, and between 8 and 15 c-cores.

Quasi-specific (QS) cores are a more general implementation of c-cores: while each

c-core targets only one specific piece of code, QS cores are designed to handle similar

(graphically isomorphic) pieces of code across hot-spotted applications [24]. To generate

QS-cores, Venkatesh et al. add a phase in their processor design methodology that searches

for similar code patterns across the input applications (matching based on the semantics of

the code, not its text). The researchers use design-space exploration to find optimal QS-

core configurations given the input code and chip space requirements. For example, when

designing cores to handle find, insert, and delete operations on a few basic data structures,

four QS-cores are able to cover the same number of code segments as 11 c-cores. This

reduces not only the total area required for the heterogeneous cores, but also the amount

and complexity of the interconnects. Preliminary results indicate that the QS-cores are

18 times more energy e�cienct than GPPs and require 66% less specialized logic than

comparable ASICs.

2.4.1 Systems on the Zynq Platform

First released in 2011, the Xilinx Zynq system consists of two standard ARM processors (the

processing system (PS)) that are tightly coupled to an FPGA fabric (the programmable

logic (PL)), significantly lowering the communication overhead between GPPs and FPGA

co-processors [27].

In 2013, Dobai and Sekanina used the Zynq system on chip (SoC) to implement an

evolvable, reconfigurable system [5]. The paper focuses on evolutionary algorithms that

iteratively generate possible configurations for a circuit, test those configurations, evalu-

ate their performance against a fitness function, and then tweak them. The Zynq’s tight

coupling of ARM processors and the programmable logic allows for faster data transfers

and more adaptive reconfiguration. For this application, the experimental results show

that the Zynq is over 400⇥ more e�cient than an ARM processor alone, and over 100⇥
more e�cient than a high-performance desktop processor. Two di↵erent reconfiguration

methodologies are compared: virtual reconfigurable circuits (VRC) which incur significant
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Figure 2.3: The Zynq SoC. Illustration from Xilinx.

space overhead but require less reconfiguration and dynamic partial reconfiguration (DPR)

acceleration which has no area overhead (since circuits are reconfigured more aggressively)

but does incur a significant reconfiguration overhead. Which of those two methods is more

e�cient depends largely on how many reconfigurations are expected and how much of the

PL can be utilized concurrently by the application.

Pendlum et al. look at using a Zynq system to perform cognitive radio (CR) analysis

by partitioning computation between the Zynq’s ARM processors and its PL [17]. CR

algorithms have two main components: spectrum sensing (monitoring the activity on the

licensed wavelengths) and spectrum decision (the dynamic, fast selection of which spectrum

to use). Spectrum sensing, which has much data parallelism, maps well to hardware imple-

mentation, while spectrum sensing, which is mostly sequential, is generally more suited for

a traditional processor. Although the authors achieve significantly better performance when

executing the entire computation on the PL than when allocating the sensing to the PL and

the decision to the PS, achieving dynamic partitioning on the Zynq platform represents a

significant accomplishment.

In a pair of 2014 papers, Vipin and Fahmy present systems for automatically and ef-

ficiently managing partial reconfiguration (PR) on the Xilinx Zynq platform [25, 26]. A

Zynq-like system is ideal for PR because the complex reconfiguration algorithms can be

processed on the ARM PS, while the data-intensive computation can be done on the con-

figured PL. While PR obviously incurs space and communication overhead (since some

configurations will use their region sub-optimally), it enables much greater overall e�ciency
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because the rest of the FPGA can function while one region is being reconfigured. The au-

thors’ open-source, automated CoPR system allows the user to define a set of configuration

specifications (to be automatically translated into bitstreams for partially reconfigurable re-

gions (PRRs)) and adaptation specifications (defining the algorithm that decides when and

how the chip should be reconfigured) in C code, ignoring the physical implementation that

the system designs. ZyCAP, an open-source PR controller, uses the ARM processors on the

Zynq to dynamically control the reconfiguration of the PL using a set of small accelerators.

The goal is to have the processor only explicitly manage very high-level reconfiguration

management, leaving lower-level mechanisms for other hardware. This strategy allows the

PS to be independently operational most of the time, instead of being occupied with the

reconfiguration and management of the PL. By leveraging the di↵erent reconfiguration and

bitstream input options, the authors manage to achieve near maximum throughput for the

PR management, improving over 3⇥ (and up to 20⇥) compared to standard implementa-

tions. Experimental results show that only as processing times get very large (amortizing

the reconfiguration costs) do the standard implementations provide comparable application

performance.

2.5 Summary

As discussed in [21, 23] and others, the end of Dennard voltage scaling means that computer

engineers must focus on using less valuable chip area to improve computational e�ciency.

Taken as a whole, the research comparing di↵erent kinds of heterogeneous processors sug-

gests that while ASICs have a considerable performance advantage compared to FPGAs,

FPGAs can be significantly more e�cient than general purpose processors (and nearly as

e�cient as ASICs when bandwidth is a limiting factor) while retaining enough flexibility

to be used for a wide variety of applications. Previous e↵orts to automate circuit design,

Figure 2.4: Processor Spectrum

synthesis, and analysis show that automated systems can e↵ectively generate near-optimal

circuit designs. Finally, previous systems that combine heterogeneous accelerators with

GPPs make it clear that such a design can o↵er significant performance and e�ciency gains

compared to a GPP alone. The c-core and QS-core research [23, 24] suggests that a system
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integrating automatically generated ASICs with a modified compiler and runtime controller

can significantly reduce power consumption while remaining mostly hidden from the end

user. While the patchability of c-cores does lengthen their life-cycle and allow them to adapt

to small code changes, an FPGA-based solution could simply update its library of c-cores

to match changes in the target code. Though the Zynq platform is relatively new and there

have been few published papers discussing its use, [5, 17, 25] all present successful systems

on the Zynq; moreover, they confirm that by tightly coupling its FPGA to the ARM proces-

sors and enabling PR, Zynq significantly mitigates the communication and reconfiguration

overhead that are so significant for co-processors [18, 19, 28]. Overall, this previous work

suggests that a c-core-like system implemented on a Zynq processor would yield significant

energy e�ciency gains compared to a GPP, allow for more long-term flexibility than an

ASIC, and incur much less overhead than other FPGA systems.



3. The Zynq Workflow

Given the findings of the studies discussed in Chapter 2, FPGAs can be significantly more

e�cient than GPPs. Moreover, because of its tightly-coupled PS and PL, the Zynq seems to

be an ideal platform on which to implement a reconfigurable co-processor. Before working

towards a more general FPGA co-processor, we wanted to demonstrate the performance

benefits of using the Zynq’s PL for a sample application that we had written. In this

chapter, we describe the process of creating and testing a circuit to show both the Zynq’s

capabilities and the di�culty of working with the platform.

3.1 Target Application: Hailstone Sequence Length Compu-

tation

The computation of Hailstone sequences, which come out of the Collatz Conjecture, is com-

putationally intensive, but it has a relatively simple control flow making it a good target for

a hardware implementation. The Hailstone sequence length computation is an interesting

number-theory calculation for a variety of reasons, all of which make its computation char-

acteristics important. Still, it is representative of a wide variety of scientific applications.

3.1.1 Hailstone Sequences

Hailstone sequences have a very simple definition as defined in Algorithm 1. As an example,

Algorithm 1 Hailstone Sequence

Require: Input n > 0.

1: repeat
2: if n is odd then
3: n 3n+ 1
4: else
5: n n

2
6: end if
7: until n = 1

17
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the Hailstone sequence for 3 is shown below.

3! 10! 5! 16! 8! 4! 2! 1

Given a Hailstone sequence, we can define its length as the number of iterations required to

reach 1. For example, the length of the Hailstone sequence for 3 is 7, because it takes seven

iterations of the main loop to get from 3 to 1. It is not known whether all positive integers

generate Hailstone sequences with finite length; the Collatz Conjecture holds that they do.

Note that when n is odd in Algorithm 1, multiplying it by 3 and adding 1 will always

produce an even number. Simply dividing that result by two before returning to the top of

the loop results in more e�cient computation. This improvement is shown in Algorithm 2.

Algorithm 2 Hailstone Sequence V 2.0

Require: Input n > 0.

1: repeat
2: if n is odd then
3: n 3n+1

2
4: else
5: n n

2
6: end if
7: until n = 1

3.2 Describing the Circuit

The first step towards using the Zynq PL is describing a circuit that will compute the tar-

get function. Xilinx supports the two most used hardware languages, Verilog and very high

speed integrated circuit (VHSIC) Hardware Description Language (VHDL). We chose to

use VHDL for this project. While VHDL code may appear similar to code from traditional

software programming languages, it di↵ers in important ways. Software programming lan-

guages such as C compile into sequential assembly language instructions that must still be

interpreted by the CPU at runtime. On the other hand, compiling and synthesizing VHDL

code creates a definition file for an inherently parallel hardware circuit that can be realized

in an ASIC or instantiated on an FPGA.

To compare the performance of the Hailstone length computation in hardware and

software, we implemented Algorithm 2 in both C and VHDL. These two implementations

are shown below.

int hailstone(long input) {
int count = 0;
long long cur = input;
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while (1) {
if (cur % 2L) { //"L" indicates a long constant

if (cur == 1L) {
return count;

} else {
cur = ((cur * 3L) + 1L) / 2L;
count += 2;

}
} else {

cur = cur / 2L;
count ++;

}
}

}

Listing 3.1: C Implementation

if val1 (0) = ’1’ then
--number is odd

if val1 = 1 then
iter_count <= std_logic_vector(count);
state <= done;
output_ready <= ’1’;
output_ready_internal <= ’1’;

else
val2 := shift_left(val1 , 1) + 1;
val2 := val2 + val1;
val1 := shift_right(val2 , 1);
count := count + 2;
state <= computing;

end if;
else

--number is even

val1 := shift_right(val1 , 1);
count := count + 1;
state <= computing;

end if;

Listing 3.2: VHDL Implementation

These two implementations look similar, but there are two important di↵erences. First, the

VHDL code utilizes state variables and synchronization signals to coordinate the computa-

tion. Second, while the C compiles into assembly code that must be interpreted, but once

the VHDL has been compiled and flashed to the Zynq’s PL, there are no more instruc-

tions or interpretation, simply wires, gates, and other hardware structures that execute the

computation.
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3.3 Using the Xilinx Vivado Toolchain

3.3.1 Simulation

Having written a VHDL file that describes the Hailstone length computation circuit, we next

used a simulator to ensure that its operation is logically correct. Testing a VHDL circuit is

significantly more complex than testing a software application, as a VHDL testbench must

mock a hardware environment attached to the circuit being tested. Instead of simply calling

a function with a few di↵erent test inputs, a programmer must define and provide a clocking

mechanism and interfaces between the circuit being tested and the testing unit. Xilinx’s

Vivado software suite includes a simulator, but the simulator provided in our version was

unreliable and frequently crashed, so we used an older Xilinx simulator from 2011. One

final issue with hardware simulation is that while it can mock the logic of a circuit, it cannot

test how the logic will be implemented in hardware, or even whether it can be implemented

at all. For example, one can simulate a VHDL circuit with a loop whose exit condition is

parametrized at runtime (e.g. i < n where n is an input parameter), but such a loop cannot

be directly synthesized.

3.3.2 Creating and Synthesizing Circuit IP

The next step is creating a new “intellectual property” (IP) block, Xilinx’s term for the

individual hardware blocks that can be implemented on their FPGAs. Vivado provides an

IP creation tool that helps with this work by automating some of the AXI—the interconnects

which handle communication between the PS and PL—parameters. Even so, the process

is quite involved, as one must import code, instantiate it in a poorly documented AXI

template, and then package the IP core.

To use the newly created IP core, it must then be integrated into a block diagram, which

e↵ectively lays out a plan for the entire Zynq system. To do so, we have to import some

Xilinx IP (such as the IP for the ARM PS) and connect the di↵erent pieces of IP correctly.

The result is a block diagram like that shown in Figure 3.1.

Once the block diagram is complete and all interconnects have been managed correctly,

it can be synthesized and implemented. Unlike software compilation, which usually takes

at most a few seconds, Vivado’s synthesis and implementation generally take between 3

and 5 minutes to run. This means that testing and updating an IP core is extremely time

consuming, as even minor changes require a significant amount of time to implement.

Synthesis and implementation output many reports, some of which detail the resource

utilization of the IP cores. The Hailstone length computation circuit uses only a small

fraction of the PL’s resources, less than 4% of its look-up tables (LUTs) and 1% of its
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Figure 3.1: Vivado block diagram for the Hailstone circuit

registers. 1

3.3.3 Testing in the Xilinx SDK

The result of implementation is a netlist that Vivado can translate into a bitstream. To

use this bitstream, and test the circuit, we use the Xilinx SDK. With the Zynq properly

connected to a computer (it requires two USB cables and the appropriate placement of a

few jumpers), we can write the bitstream to the PL. At this point, our circuit is in place

on the Zynq’s PL, waiting for input.

Testing is also more complicated than with a normal software application. The circuit

cannot simply be called like a normal C function. Instead, one must use either flags or in-

terrupts to communicate between the PS and PL. In this implementation, we used a custom

scheme to implement communication between PS and PL with a set of flags contained in

some of the AXI registers. When the PS wants to compute the Hailstone sequence length

of an integer, it writes the input value to the INPUT register and sets the INPUT READY

register. The circuit reads that INPUT READY is high, consumes the input, and raises its

INPUT CONSUMED flag. When it has finished computing the Hailstone sequence length, the

circuit writes the result to the OUTPUT register and sets its OUTPUT READY flag high. Once the

PS reads that OUTPUT READY is high, it reads the output and resets INPUT READY; the circuit

then resets the OUTPUT READY flag. At this point, the PS can initiate a new computation.

Obviously this interface is much more di�cult to implement than a simple function call,

1
Even that estimate may be high. We believe much of the circuitry is one-time overhead that is

computation-independent.
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but it is necessary to synchronize the computation between the independently clocked PS

and PL. Thus, while the main goal of the Hailstone test was to compare the performance

of software and hardware implementations of the Hailstone sequence length computation,

a secondary target was evaluating the speed of the Zynq’s interconnects between the ARM

processors and the PL. There is overhead involved in synchronizing and communicating be-

tween those two chip components, and a useful co-processor design must yield performance

improvement despite that overhead.

3.4 Summary

To compare the software and hardware implementations, we timed how long it took each to

compute the Hailstone sequence length for each of the first n integers, with n ranging from

1,000 to 10,000,000. To test the hardware implementation we used the communication

scheme described above in Subsection 3.3.3 to iteratively supply each input value, wait

for the circuit to signal that it had finished, and then read the circuit’s output. To test

the software implementation, we called the hailstone(long input) function. For each

iteration count, we timed both implementations three times and averaged the results.

Figure 3.2: Speedup of hardware implementation over software

Despite the overhead involved in communicating between the PS and PL, and the inher-

ent lack of parallelism in this computation, the hardware implementation was significantly

more e�cient. As shown in Figure 3.2, the hardware implementation was faster for all trials
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of more than 1000 iterations; for the longer-running trials it was roughly 50% faster than

the software implementation.

This is an extremely promising result, as it demonstrates that hardware computation

can be faster and more e�cient than software even for straight-line code that does not

exploit any parallelism. Further, as discussed in Subsection 3.3.2, the synthesized circuit

for this computation required an almost negligible amount of the PL’s resources, around

4% of its LUTs, suggesting that even a more parallel (and e�cient) solution would easily

fit into a small corner of the PL fabric. While we have no direct method of evaluating

the energy consumption of the calculation, we expect those improvements are even more

significant.



4. Reconfigurable Datapath

Design

In this section, we discuss first the concept and benefits of an abstracted FPGA-based co-

processor and then the reconfigurable datapath that we have designed as a first step towards

that goal.

4.1 Concept and Goals

The results of the Hailstone sequence length computation discussed in Chapter 3 and the

research discussed in Chapter 2 show that an FPGA-based co-processor can provide signifi-

cant performance improvement over a GPP alone. However, FPGA flexibility and e�ciency

comes at a significant workflow-cost, as they are extremely di�cult to work with. The chips

themselves are very complex (see, for example, Xilinx’s 1863 page manual for the Zynq [27]);

the learning curves for VHDL and Verilog are steep; and the software supporting FPGAs is

clumsy, expensive, industry-specific, slow, and poorly documented. Indeed, a large portion

of current FPGA research, such as Lavin et al.’s RapidSmith focuses on simplifying the

workflow for computing on an FPGA [13]. As a result, while some hardware and system

designers may appreciate the flexibility that an FPGA provides, average users need a higher

level of abstraction. They could benefit from some of an FPGA’s capabilities without be-

ing exposed to the full intricacy of the hardware itself. E↵ectively, we need to make the

FPGA’s fabric coarser, giving the user access to flexible, easily managed modules that can

be placed on the FPGA fabric. As a first step, we have created a reconfigurable datapath

that encapsulates what is e↵ectively a microcode controlled vector processor managed at

runtime in C.

24
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4.2 Circuit Design and Implementation

The basic model for the reconfigurable datapath is a state machine that performs compu-

tation on two (or three, for multiply-add) elements on every clock cycle. Using this model,

a diagram of which is shown below in Figure 4.1, makes it easy for the user to succinctly

supply all of the necessary state for a given computation and for the circuit to keep track

of all necessary state until the computation has been completed. Comparison of a user-

defined iteration limit and an internal iteration count determines when a computation is

complete. In the rest of this section we describe the main components of the state machine

and its operation: data transfer, data storage, array pointers and increments, and available

operations.

 ...

 ...

b)

a)

c)

c)

c)

d)

e)

f )

g)

a)

a)

Figure 4.1: Logical diagram of the reconfigurable datapath. On each iteration, three vector
o↵sets (a) index elements from the tri-ported RAM (b); each pointer is then incremented
by its vector stride (c). The ALU (d) operates on those elements and the result is stored
in the output RAM (g) and added to the accumulator (f). Execution continues until the
iteration count (e) reaches the user-provided limit.
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4.2.1 Data Transfer

For this project, we used the Zynq’s AXI4-Lite interface to implement data transfer be-

tween the PS and the datapath on the PL. The implementation uses some of shared AXI

registers for data transfer and others as a system of flags similar to that of the Hailstone

circuit described in Section 3.2. When the PS is ready to transfer input data to the PL,

it raises an INPUT READY flag, loads the first value into the transfer register, and incre-

ments a PS IO INDEX register. On the next clock cycle, the circuit reads that the processor

INPUT READY flag is set high and that the value of the PS IO INDEX is greater than the

PL IO INDEX (initialized to zero). The circuit will therefore read in the value from the trans-

fer register, write that value to a block RAM on the PL, and increment the PL IO INDEX.

When the processor sees that the PL IO INDEX has been incremented and is now equal

to the PS IO INDEX, it can put a new value into the transfer register and increment the

PS IO INDEX to transfer the next data element. This process continues until the proces-

sor has supplied all of its input, at which point it will lower the INPUT READY flag and

reset the PS IO INDEX. This mechanism allows us to synchronize computation between the

independently clocked PS and PL.

After computation has completed, a similar operation is used to transfer output from

the PL to the PS, with the circuit placing output values in the data transfer register and

the processor reading those values until all of the output has been consumed.

4.2.2 Data Storage

On the PL, input data is stored in a tri-ported memory that make use of the Zynq’s ded-

icated block RAM (BRAM) [27]. Using the dedicated “hard” RAM blocks as opposed to

distributed RAM implemented on the fabric’s LUTs results in significantly better perfor-

mance, e�ciency, and space utilization as discussed in [12]. The input is stored in tri-ported

RAM so that during operation, three input values can be read and used on every clock cycle.

Output data is stored in a separate BRAM. One value is written to this BRAM on each

datapath cycle during computation. After computation is complete, one value is read from

this BRAM and placed into the data transfer register on each cycle.

4.2.3 Vector O↵sets and Strides

The user supplies three integer vector o↵sets (A, B, and C) and a stride length for each.

On each cycle of the datapath, those o↵sets are used as indices into the tri-ported RAMs to

read the operands for that cycle. Each o↵set is then incremented by its user-specified vector

stride so that the next value can be supplied for the following cycle. This setup allows both

standard array traversal and constant operands (by setting the stride length to 0).
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4.2.4 Operations

On each datapath cycle, up to three operands are read from the tri-ported RAM, the user-

specified operation is performed, and the result is written to the output RAM and added

to an accumulator. There are five available operations which the user can choose: add,

subtract, multiply, multiply-add, and “black box.” The first four of those operations are

performed on the Zynq’s dedicated DSP48 ALUs. As with the BRAMs, using the dedicated

hardware is more e�cient than ALUs implemented on the general FPGA fabric.

The “black box” option allows the user to supply a pre-compiled and synthesized circuit

that computes some function of up to three operands. For example, the Hailstone sequence

length circuit discussed in Section 3.1 could be supplied as the black box function, and each

datapath cycle would then compute the length of the Hailstone sequence for the value at

vector o↵set A in the input RAM. This feature lets the user piggyback his computation

on our infrastructure. Most people likely will not want or be able to synthesize their own

circuits, but for those that do, this feature allows them to easily use those circuits without

also designing and implementing an interface between the PS and their circuit.

4.3 User Interface

In the following sections, we will give a basic outline of the C interface for the datapath.

We will then show how one can compute vector magnitude using that interface.

4.3.1 C Interface

The user interface for the datapath is a simple C struct, alu computation. The basic

parts of the interface are shown below in listing 4.1. baseaddr p is a pointer to the

base AXI4 register that the processor and circuit share. That is, baseaddr p points to

the lowest register value through which the processor communicates with the datapath.

arr pointer is a pointer to the PS input vector. arr size is the number of input el-

ements. a base index, b base index, c base index and a inc, b inc, c inc are the

three vector o↵sets and their vector strides respectively. operation code is a function

code indicating the user’s choice of operation. limit defines how many iterations the dat-

apath should perform - the logical vector length. The result of computation is stored in

an alu computation result struct that contains both the total accumulated value of the

computation and a pointer to the result array.

typedef struct alu_computation alu_computation;
typedef struct alu_computation_result alu_computation_result;

struct alu_computation {
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uint32_t *baseaddr_p; // shared register base address

int *arr_pointer; // input vector base address

int arr_size; // input vector size

int a_base_index , b_base_index , c_base_index;
// initial vector offsets

int a_inc , b_inc , c_inc; // vector strides

int operation_code; // function code

int limit; // iteration limit

};

struct alu_computation_result {
double accumulated_value; // final accumulator value

int *result_array; // pointer to result array

};

// create a new alu_computation struct

alu_computation *create_alu_computation ();

// execute the computation defined by c and return the result struct

alu_computation_result *alu_compute(alu_computation * c);

Listing 4.1: C interface header file for reconfigurable datapath

To perform a computation, the user simply creates an alu computation struct by calling

create alu computation, fills in the struct members, and then calls alu compute, passing

in the pointer to the filled-in struct. alu compute transfers the data to the PL, sets up the

computation, retrieves the results, and places them in an alu computation result struct.

4.3.2 Example Usage: Vector Magnitude

The code in Listing 4.2 shows how the datapath can be used to easily calculate the magni-

tude of the vector containing the digits 0 through 9. The user first creates and fills in her in-

put array in lines 1-6. She then creates the alu computation and fills in its members appro-

priately (operation code 2 indicates multiplication). The a base index and b base index

vector o↵sets are both initialized to 0 and their strides to 1 because computing vector mag-

nitude involves walking through the vector one element at a time and multiplying each

element by itself. She then simply calls alu compute to get her alu computation result.

The result’s accumulated value contains the sum of the squares of each element, so the

user simply computes the square root of that value to get the vector’s magnitude.

1 int arr_len = 10;
2 int arr [arr_len ];
3 int i = 0;
4 for(; i < arr_len; i++) {
5 arr[i] = i;
6 }
7 alu_computation *c = create_alu_computation ();
8 c->baseaddr_p = baseaddr_p;
9 c->arr_pointer = arr;
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10 c->arr_size = arr_len;
11 c->a_base_index = 0;
12 c->b_base_index = 0;
13 c->c_base_index = 0;
14 c->a_inc = 1;
15 c->b_inc = 1;
16 c->c_inc = 0;
17 c->operation_code = 2;
18 c->limit = arr_len;
19
20 alu_computation_result * res = alu_compute(c);
21
22 printf("Vector magnitude: %f\n", sqrt(res ->accumulated_value));

Listing 4.2: Example usage of C struct to calculate vector magnitude

4.4 Summary

The runtime reconfigurable datapath described in this section represents a first step towards

a larger scale FPGA-based co-processor. The “black box” feature in particular provides a

prototype for a future system in which a central FPGA hub handles communication between

the processor and several hardware circuits; those circuits could even be a collection of c-

cores, creating a system like that described in Section 2.5.

Perhaps most important, the FPGA’s reconfigurability makes it possible to modify, im-

prove, or even discard this design without any significant financial or technical ramifications:

unlike an ASIC, an FPGA does not lock its users into the hardware design that comes out

of the fabrication plant.
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Performance

The current implementation of the datapath as described in the previous chapter is merely

a proof-of-concept. Knowing this, we decided not to optimize its performance, and instead

focused on ensuring that we had created a solid foundation and clear road-map for future

work—many possible improvements are outlined in Chapter 6, which follows. Nevertheless,

we wanted to test the performance of the datapath as currently implemented to confirm

that with fine-tuning and optimization, we can provide simple user interfaces for e�cient,

partnered computation on a hybrid GPP-FPGA platform.

We chose vector dot product as our test computation for two main reasons. First, it is a

widely used and understood computation that is therefore relevant to many di↵erent appli-

cations. More importantly, dot product’s simplicity makes interpretation of the datapath’s

performance straightforward. In its current implementation, the datapath does not exploit

any parallelism by, for example, computing the product for multiple indices concurrently,

so its performance reflects only the relative e�ciency of computing in hardware as opposed

to software.

To test performance on vector dot product, we computed the dot product of integer

vectors with 1000 elements. We computed 100 dot products per trial and then took the

average time per dot product operation (total time divided by 100). We ran 10 trials

for each implementation and selected the fastest times from those 10. For the hardware

implementation, we ran two sets of trials: one that timed the entire computation, including

data transfer, and one that included only the time required to compute the dot product.

The latter was measured as the time between the PS raising its COMPUTE READY flag and

the circuit raising its OUTPUT READY flag.

The results are shown below in Table 5.1. While the entire datapath computation,

including data transfer, was orders of magnitude (roughly 25⇥) slower than the software

implementation, the datapath computation was over 33% faster than the software imple-

mentation. This is an extremely promising result. Clearly, data transfer is always going to
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Table 5.1: Vector Product Results

Software Datapath Total Datapath Computation Only

Time Per Dot Product 0.054 ms 1.36 ms 0.039 ms

outweigh the dot product computation itself given that each element is only operated on

once, though that overhead can be mitigated by techniques discussed in Subsection 6.1.1.

That the datapath is faster than software implies that even for generic, serial applications,

a hardware circuit should be more e�cient than software code. Indeed, the increased per-

formance must come from the elimination of the instruction fetch and decode overhead

discussed in Section 2.2: by eliminating the 90% of GPP computation that is almost pure

overhead, even a sub-optimal hardware solution can be more e�cient than a software im-

plementation. Just as the c-cores researchers suggested, specialized circuitry and hardware

computation are e�cient even when they do not exploit parallelism.



6. Future Work

The reconfigurable datapath described in this thesis represents just a first step towards a

complete FPGA-based co-processor system. In this section, we will discuss some of the ways

we can move closer to that goal, first with enhancements to the reconfigurable datapath as

currently implemented and then by integrating some of the previously studied techniques

discussed in Chapter 2. Because the datapath has a very small footprint on the PL, as

shown in Figure 6.1 and Table 6.1, even improvements that would consume significantly

more PL resources are quite feasible.

Figure 6.1: Datapath footprint on the Zynq PL. Leaf nodes used by the datapath are
highlighted in blue.
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Table 6.1: Datapath Resource Utilization

Resource LUTs Registers BRAM DSP ALUs
Utilization 4% 2% 6% 2%

6.1 Upgrades to the Reconfigurable Datapath

6.1.1 Improving Data Transfer

Improving the data transfer technique used by the reconfigurable datapath would signifi-

cantly decrease one of its primary sources of overhead. Currently, data transfer works as

described in Subsection 4.2.1: data values are read in by the PL one at a time from a data

transfer register. While this overhead may be negligible for long-running computations,

for shorter computations, or computations which use more data than can be stored in the

datapath at one time, a more diverse set of data transfer methods would be beneficial. In

this area, there are a few main options that could be implemented, possibly in tandem.

• Pipelining the data transfer would allow computation to begin before all of the data

had been read in. Pipelining would mitigate the overhead of data transfer by ensuring

that after the first set of data had been read in, useful work (and not just data transfer)

would be done during all future datapath cycles. Unfortunately, pipelining is not

simply a matter of starting computation on the second datapath cycle, since doing so

might result in invalid memory reads if, for example, one of the vector o↵sets were

pointing to an index that had not yet been read in.

• The Zynq SoC includes several types of AXI interconnects between the PS and PL,

each of which has its own set of advantages and disadvantages. Integrating some

of these alternative transfer methods might be beneficial in certain circumstances.

For example, the AXI Streaming FIFO would reduce overhead for large transfers.

In certain circumstances, direct memory access might render transferring input data

unnecessary. Adding these (and other) capabilities to the datapath would not be

simple, however, as each is only useful for particular applications. Moreover, managing

all of the di↵erent possible input streams would be quite complex, and would add

significant space overhead to the datapath. I/O automation and appropriate I/O

abstractions are very important areas of study.

6.1.2 Computation Pipelining and Multiple ALUs

Pipelining computation and introducing multiple ALUs would reduce the computation time

at the cost of increased resource usage. One of the major advantages that ASICs and FPGAs
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have compared to GPPs is their ability to exploit data parallelism, but the datapath, as

currently implemented, does not do so. More PL area or BRAMs would be required for

data storage (since more RAM reads would happen on every cycle) and more of the DSP48

units would be taken up. This, in turn, limits the resources available for both black box

computations and other circuits on the PL.

6.1.3 Broadening the Capabilities

One more way to make the datapath more capable would be to increase its scope. This

could take a few di↵erent forms, a couple of which are detailed below.

• Adding support for data elements of other sizes and types (as opposed to just 32-bit

integers) would allow the datapath to be used for a much broader set of computation-

intensive tasks, such as computing edit distance between strings. As with the other

improvements, this would be quite complex, requiring many di↵erent run-time options

and a much more robust black box integration.

• Transforming the datapath into a communication hub responsible for transferring data

and signals between the PS and many heterogeneous circuits on the PL would move us

further towards a c-core like system. Indeed, with a truly functional communication

hub between the PS and PL-based circuits, one could even implement the c-cores

themselves on the PL and use them to e�ciently handle the segments of code that

they were designed to compute.

6.2 Integration with a Compiler and Kernel

For an FPGA-based co-processor to gain widespread use, it must be integrated into both

compilers and the system kernel so that programmers do not have to explicitly invoke its

use. Indeed, while an enhanced version of our datapath might represent a useful tool for

e�ciency-focused developers who were aware of it, only automatic, implied invocation from

the compiler or runtime machine will lead to significant e�ciency improvements across most

applications. As a simple example, Python’s list comprehensions are an ideal target for a

co-processor capable of e�ciently mapping computations across a vector of input data, but

we cannot expect every Python developer to explicitly invoke a co-processor. Indeed, doing

so would create code that was not portable, as systems without the co-processor would be

unable to execute the modified code. Instead, the Python interpreter should be modified to

invoke the co-processor if it is available on the interpreter’s host system. Previous research

in this area [4, 18, 23] suggests that even relatively complex decisions, such as whether or
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not the co-processor should be invoked for a specific instance of a computation that it can

handle, can be made at runtime to further maximize e�ciency.

Integration with a kernel would also improve co-processor I/O by allowing the co-

processor to use memory mapping and interact with the general purpose processor through

a device driver. Though the Zynq platform is relatively new, there are already a few device

driver IP cores that help manage the interface between a Linux operating system on the PS

and user logic on the PL [1].

6.3 Partial Reconfiguration

Partial reconfiguration refers to shutting down and reconfiguring only a portion of an FPGA

while the remainder stays active and running. In general, this is obviously preferable to

shutting down the entire FPGA if not all of it must be reconfigured, though it does intro-

duce the di�culty of managing reconfigurable regions and some waste of FPGA resources.

Moreover, for PR to be truly e�cient, circuits that could occupy the same region must have

similar resource requirements and interconnect configurations.

PR would allow an FPGA-based co-processor to dynamically swap in circuits designed

to e�ciently handle whatever code was currently running. For example, if someone opened

an application on her phone, and that application had an associated circuit designed to make

it run more e�ciently, the co-processor could instantiate that circuit on its programmable

logic without shutting down completely and interrupting other ongoing computations such

as cell signal processing. The research of Vipin and Fahmy indicates that relatively e�cient

PR can be achieved on the Zynq [25].

6.4 Automated Circuit Design and Synthesis

Section 2.3 reviewed previous research on automated circuit design, synthesis, and analysis.

Integrating that automation into a c-core like system would be hugely beneficial. Circuits for

frequently used code could be automatically generated, installed into a circuit library, and

then controlled by a runtime partial reconfiguration manager. Periodically, the processor

could evaluate the performance of those circuits, improve their designs, and recompile them

into the library. This sort of evolutionary algorithm would, over time, tailor each co-

processor to its users without any explicit input from the users themselves. Further, it

would mean that all applications, and not only those whose developers had designed an

accompanying accelerator, might benefit from dedicated circuits on the co-processor.
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6.5 Future Concerns

While an FPGA-based co-processor could greatly improve computational e�ciency and

help fight against the trend of dark silicon, it would also introduce some new concerns.

Most prominent among these is hardware security. Software viruses, malware, and exploits

are a constant worry, and a hardware virus or maliciously designed circuit could be equally

harmful. Without the proper protections in place, malicious developers could design circuits

to interrupt or steal information from other circuits on the FPGA, or to render the co-

processor wholly unusable by attacking communication interconnects. Guarding against

such attacks requires a new set of security checks that can identify harmful circuit designs

and enforce boundaries between circuits which are not designed to co-operate.



7. Conclusion

Using reconfigurable hardware to build a partnered computation processor is the most

promising way to break through stagnating performance in the face of dark silicon.

The datapath we implemented clearly is not capable of yielding tangible benefits for real-

world applications, but our results confirm what earlier research suggested: general purpose

processors waste too much of their execution on computational overhead. Indeed, both

experiments discussed in this work evaluated the performance of using hardware circuits

to execute serial algorithms—we did not even exploit any of the inherent parallelism in

computing vector dot product—and in both cases the hardware computation was faster

and more e�cient than a software implementation. Given that the individual hardware

components on the Zynq PL (the ALUs, BRAMs, clocks, etc) are all likely slower than

their ARM counterparts in the PS, the e�ciency gains must have come from eliminating the

overhead of instruction fetch, decode, and interpretation. As the c-cores researchers stated,

specialized circuitry can improve computational e�ciency even in the absence of parallelism,

and almost all of the code that a CPU executes could be executed more e�ciently by an

appropriate hardware circuit.

Our datapath and the future work discussed in Chapter 6 provide a proof-of-concept and

roadmap for a general purpose, partnered computation processor. Following that vision by

coupling software and hardware computation, we can increase e�ciency and performance

in the era of dark silicon.

37



Acronyms

ALU arithmetic logic units (ALUs) are fundamental processor components that perform

arithmetic or bitwise logical functions on binary integer inputs.

ARM advanced RISC machine (ARM) is a set of RISC architectures developed by ARM

Holdings. ARM is currently the dominant RISC architecture, and ARM processors

are used in most mobile devices.

ASIC application specific integrated circuits (ASICs) are integrated circuits designed for

a particular application. They generally cannot be used for other purposes.

AXI Advanced eXtensible Interface (AXI) is a set of micro-controller buses used in the

Zynq SoC to handle data transfer between the PS and IP cores on the PL.

BRAM block RAMs that are placed on an FPGA fabric to provide more e�cient memory

storage for FPGA circuits.

CISC complex instruction set computing (CISC) is a CPU design strategy in which each

instruction can execute multiple low-level operations. Intel’s x86 is the most common

modern CISC architecture.

CPU the central processing unit (CPU) performs the instructions of a computer program

by executing the operations specified by the instructions.

EPIC explicitly parallel instruction computing (EPIC) is a hybrid between RISC and

VLIW architectures in which the compiler controls parallel instruction execution by

executing multiple software instructions in parallel. In VLIW systems, CPU hardware

has to manage the scheduling of parallel execution.

FPGA field programmable gate arrays (FPGAs) are integrated circuits that can be recon-

figured after they have been manufactured.
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GPGPU general purpose computing on graphics processing units (GPGPU) refers to using

a GPU to execute computation normally performed by the CPU. GPGPU can have

better performance than computation on a CPU for applications with large amounts

of data parallelism, such as vector processing.

GPP general purpose processors (GPPs) are processors that can be used for a wide variety

of programs and applications.

GPU graphics processor units (GPUs) are integrated circuits designed to e�ciently process

images for output to a display. GPUs exploit data parallelism to achieve much higher

performance than CPUs for typical image processing algorithms.

IP intellectual property (IP) cores are how Xilinx defines the individual hardware blocks

that can be implemented on their FPGAs.

LUT look-up tables (LUTs) replace computation with indexing into a stored data array.

Most computation on FPGAs is implemented through select lines that index into

LUTs to encode Boolean logic functions.

MIPS microprocessor without interlocked pipeline stages (MIPS) is a RISC instruction set

first introduced by MIPS Technologies in 1981.

PL programmable logic (PL) refers to the FPGA portion of the Zynq SoC.

PR partial reconfiguration (PR) refers to shutting down and reconfiguring only a portion

of an FPGA while the remainder stays powered and running.

PS processing system (PS) refers to the ARM GPPs in the Zynq SoC.

RAM random access memory (RAM) is a type of data storage in which read and write

times are independent of order of access.

RISC reduced instruction set computing (RISC) is a CPU design strategy that uses smaller

set of optimized instructions so that instructions can be executed in fewer clock cycles.

ARM and MIPS are the most prominent RISC architectures.

SoC system on chip (SoC) integrated circuits combine all the components of a computer

onto a single chip. SoCs consume less power than traditional computers and are

therefore used in mobile devices and embedded systems.
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VHDL VHSIC Hardware Description Language (VHDL) is a hardware description lan-

guage used to define digital systems and integrated circuits. VHDL and Verilog are

the two most widely used hardware description languages.

VLIW very long instruction word (VLIW) processor architectures allow programmers to

specify instructions to execute in parallel.
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