
Automatic Generation of Penrose Empires

by
Jason B Healy

A Thesis Submitted in partial fulfillment of the
requirements for the Degree of Bachelor of Arts

with Honors in Computer Science

Williams College
Williamstown, MA

May 19, 2000



Abstract

Penrose tilings are infinite tilings that cannot tile the plane in a periodic manner.
They are of interest to researchers because they may model a new type of matter
called quasicrystals. Being able to easily generate and manipulate Penrose tilings
makes them easier to study, and that is the primary goal of this research. Although
Penrose tilings are infinite, we would like to be able to store them in a finite device,
such as a computer, so that they may be more easily studied. The primary aim of
this research is to attempt to discover some of the underlying structure of Penrose
tilings, so that the tilings can be reduced and stored in an efficient, finite manner.

In addition to being able to store tilings, this research also aims to learn more
about constructing the tilings themselves. Because we are reducing an infinite amount
of data to a finite amount of information, there will necessarily be some computation
required to reconstruct the information that is not explicitly stored. This research
will investigate methods of constructing Penrose tilings from a small amount of initial
information.

The algorithms developed and discussed in this work allow us to represent Penrose
tilings as a small set of finite variables and then compute any arbitrary information
about the tiling on demand. In this way, we can reconstruct as much of any tiling
that we desire, without needing to store the entire tiling. It is hoped that the methods
used will allow more detailed study of Penrose tilings to take place in future research.



1

Acknowledgments

“All life is an experiment. The more experiments you make the better.”
—Ralph W. Emerson

“If I have seen farther it is by standing on the shoulders of giants.”
—Isaac Newton

This research would not have been possible without the help of several people.
My advisor, Duane Bailey, knew that I wanted to do an honors thesis before I did
(he seems to have a knack for this). Without his guidance and “motivational” talks,
this work would have never been completed. He knew just when to congratulate me
on work well done, and (more often) when to tell me all the things that still needed
finishing.

I also owe a great thanks to Linden Minnick, who paved the way for my research
by performing her own. Out of respect for her, one of my Java objects was given the
name “Linden”. To this day I cannot believe that she hand-colored so many pictures
of Penrose Empires without losing her mind.

Finally, I thank Bill Lenhart, who helped me with revisions to this work. Not
only did he help my research, but also my morale. He always greeted me with a smile
and friendly conversation, and served as a reminder that I should should be having
fun, no matter what I’m doing.



Contents

1 Introduction 9
1.1 Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Aperiodic Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Penrose Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Legal Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background for Research 17
2.1 Ammann Bars: A Non-Local Aid . . . . . . . . . . . . . . . . . . . . 17
2.2 Minnick’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Musical Sequences 22
3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Musical Sequence Rules . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Forcings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Ammann Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Five-Fold Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Extended Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Forcing Arbitrary Ammann bars . . . . . . . . . . . . . . . . . 32
3.4.2 Minnick’s Work . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Pseudo-Code Implementation . . . . . . . . . . . . . . . . . . . . . . 37

4 Forcing Rules 43
4.1 Finding Forced Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Finding Unique Patterns . . . . . . . . . . . . . . . . . . . . . 46
4.2 Matching Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2



CONTENTS 3

4.3 Forcing New Information . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Darts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Minnick’s Double Kite . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Drawing Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Kites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Darts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Implementation 52
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Musical Sequences and Ammann Bars . . . . . . . . . . . . . . . . . . 53
5.3 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Feature Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 Feature Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 Pattern Matching Algorithm In Detail . . . . . . . . . . . . . . . . . 65

5.7.1 Scan Line Algorithm . . . . . . . . . . . . . . . . . . . . . . . 65
5.7.2 Mapping Verification . . . . . . . . . . . . . . . . . . . . . . . 66

5.8 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.8.1 Ammann Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.8.2 Further Optimizations . . . . . . . . . . . . . . . . . . . . . . 73

6 Results 74
6.1 Verified Empires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 The Ace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.2 The Deuce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.3 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.4 The Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.5 The Jack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.6 The Queen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.7 The King . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Ongoing and Future Work 94
7.1 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Three-Dimensional Work . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 Iterative Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8 Summary and Conclusion 105



CONTENTS 4

A Colophon 107



List of Figures

1.1 An example of a tiling using a square as the only prototile. The shaded
tile shows an example of a prototile. The tiling has translational and
rotational symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 One possible unit cell in the box tiling. The shaded region shows how
four tiles can be combined into a larger unit cell which tiles the plane. 11

1.3 Prototiles that could generate a non-periodic tiling. Each triangle tile
is the same as half of the square tile. . . . . . . . . . . . . . . . . . . 11

1.4 Penrose Kite (left) and Dart (right), with vertices colored to enforce
matching rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 The seven legal vertex configurations in a Penrose tiling. . . . . . . . 15

2.1 Penrose Kite (left) and Dart (right) with Ammann markings. . . . . . 18

3.1 Inflation of a musical sequences, beginning with S. . . . . . . . . . . . 23
3.2 Deflation of the musical sequences from Figure 3.1.1. . . . . . . . . . 26
3.3 Examples of invalid musical sequences. The left example is trivially

invalid, but the right example requires several deflations before the
flaw becomes apparent. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 The musical sequence LSLLSLSL represented using Ammann bars.
The intervals between bars are marked with their symbolic equivalents
to show the relationship between Ammann bars and pure symbolic
musical sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 The distance between two Ammann bars, represented in terms of L
and S. Above, all the possible orderings of symbols that fit between
two bars forced at a distance (4L+2S) from each other. Notice that the
middle bar (dark grey) always appears in the same place, even though
we did not explicitly force its position. This bar is forced. . . . . . . . 29

5



LIST OF FIGURES 6

3.6 An example of how Ammann bars and Penrose tilings interact. On the
top, five sequences of Ammann bars. On the bottom, a Penrose tiling.
The center shows the two superimposed. . . . . . . . . . . . . . . . . 31

3.7 An unforced musical sequence represented as Ammann bars, and a
musical sequence with a single interval forced. . . . . . . . . . . . . . 32

3.8 An empty integer lattice. . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9 Left: An integer lattice with a line of slope τ through it. Right: The

line with the y values truncated to integers. Bottom: the integer values
converted to interval symbols . . . . . . . . . . . . . . . . . . . . . . 35

3.10 A lattice with two lines with slope τ `0 and `1, with y-intercepts 0 and 1. 36
3.11 Forcing a bar in the integer lattice. . . . . . . . . . . . . . . . . . . . 38
3.12 Definition of two truncation functions. . . . . . . . . . . . . . . . . . 40
3.13 A pseudo-code implementation of the functions ForceBar and IsBar-

Forced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 The Ace configuration: an example of local tile forcing. . . . . . . . . 43
4.2 Penrose Kite (left) and Dart (right) with Ammann bars superimposed. 44
4.3 The four s in finding the empire of a patch of Penrose tiles, clock-

wise from upper left: (A) The initial patch of Penrose tiles. (B) The
Ammann bars forced by the initial tiles. (C) The new Ammann bars
forced by the initial bars. (D) The new Penrose tiles overlayed on the
new Ammann bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 An example of a false match, using insufficient information. On the
left, the Ace. On the right, the Queen. The bars in bold are shared
by the two configurations, and so are not sufficient to match a unique
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 The two bars (shown in bold) from the Dart (Ace) that are not required
to be forced. Only one of these bars must be forced for the Dart to be
forced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 The “Double Kite” formation. Although the two Kites do not directly
force any Ammann bars, they force an Ammann bar at a distance S
from the Ammann bar that passes through both Kites. . . . . . . . . 49

4.7 A Kite tile, with the “Kite Triangle” Ammann bars in bold. . . . . . 50

5.1 A sample Ammann bar sequence, with center (x, y) and rotation θ. . 54
5.2 A sample field of intersection points. The Ammann bars are shown in

light grey. A sample pattern like one we might search for is shown at
bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



LIST OF FIGURES 7

5.3 A pseudo-code implementation of the Intersection-finding algorithm . 56
5.4 A sample constellation. Note that the constellation is defined at an

angle and position that is easy to compute. . . . . . . . . . . . . . . . 57
5.5 A sample ordering of points in a plane, from left to right, top to bottom.

Iterating over the points in order results in the path shown. . . . . . 59
5.6 A constellation with the unique point-pair marked. The points are

separated by a distance δ. . . . . . . . . . . . . . . . . . . . . . . . . 60
5.7 An example of the scan line used in the pattern-finding algorithm. . . 61
5.8 An example of how forcing information contained in the constellation

is applied to force new information in a tiling. . . . . . . . . . . . . . 63
5.9 A pseudo-code implementation of a function to force new Ammann

bars in a Penrose tile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.10 A pseudo-code implementation of the scan line queue from the pattern

matching algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.11 A pseudo-code implementation of the pattern verification algorithm. . 69
5.12 A graphical demonstration of how the scan line reduces the complexity

of the pattern matching algorithm. The total number of points is n,
but only

√
n points are under consideration at any time. . . . . . . . 72

6.1 Minnick’s vector distances relating Penrose tile vertices and Ammann
bars. The distances correspond to those marked in Figure 6.1.7 and
Figure 6.1.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Dart tile with Minnick’s distances from Figure 6.1.7 marked. . . . . . 78
6.3 Kite tile with Minnick’s distances from Figure 6.1.7 marked. . . . . . 79
6.4 The initial constellation of the Ace configuration. . . . . . . . . . . . 80
6.5 Ammann bar forcing distances for the Ace configuration. . . . . . . . 80
6.6 The empire of the Ace configuration. No non-local tiles are forced by

this configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.7 The initial constellation of the Deuce configuration. . . . . . . . . . . 82
6.8 Ammann bar forcing distances for the Deuce configuration. . . . . . . 82
6.9 Part of the empire of the Deuce configuration. . . . . . . . . . . . . . 83
6.10 The initial constellation of the Sun configuration. . . . . . . . . . . . 84
6.11 Ammann bar forcing distances for the Sun configuration. . . . . . . . 84
6.12 The empire of the Sun configuration. No non-local tiles are forced by

this configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.13 The initial constellation of the Star configuration. . . . . . . . . . . . 86
6.14 Ammann bar forcing distances for the Star configuration. . . . . . . . 86
6.15 Part of the empire of the Star configuration. . . . . . . . . . . . . . . 87



LIST OF FIGURES 8

6.16 The initial constellation of the Jack configuration. . . . . . . . . . . . 88
6.17 Ammann bar forcing distances for the Jack configuration. . . . . . . . 88
6.18 Part of the empire of the Jack configuration. . . . . . . . . . . . . . . 89
6.19 The initial constellation of the Queen configuration. . . . . . . . . . . 90
6.20 Ammann bar forcing distances for the Queen configuration. . . . . . . 90
6.21 Part of the empire of the Queen configuration. . . . . . . . . . . . . . 91
6.22 The initial constellation of the King configuration. . . . . . . . . . . . 92
6.23 Ammann bar forcing distances for the King configuration. . . . . . . 92
6.24 Part of the empire of the King configuration. . . . . . . . . . . . . . . 93

7.1 Two-Ace interference: Separation 1 . . . . . . . . . . . . . . . . . . . 96
7.2 Two-Ace interference: Separation 2 . . . . . . . . . . . . . . . . . . . 97
7.3 Two-Ace interference: Separation 3 . . . . . . . . . . . . . . . . . . . 98
7.4 Two-Ace interference: Separation 4 . . . . . . . . . . . . . . . . . . . 99
7.5 Two-Ace interference: Separation 5 . . . . . . . . . . . . . . . . . . . 100
7.6 Two-Ace interference: Separation 6 . . . . . . . . . . . . . . . . . . . 101
7.7 Two-Ace interference: Separation 7 . . . . . . . . . . . . . . . . . . . 102



Chapter 1

Introduction

Before launching into the more specific details that relate to this work, we will provide
a brief history of Penrose tilings so that the reader may become familiar with the
general background of the problem. In the next chapter, we outline the more specific
background of the empires of Penrose tilings, the primary concern of this work.

1.1 Tilings

A tiling is generated by a finite set of prototiles that are arranged so that copies
of the prototiles cover the plane in an edge-to-edge adjacent manner. One of the
simplest tilings is a square with copies laid out next to each other to cover a plane as
in Figure 1.1. Here, the square is the only prototile.

This tiling exhibits various forms of repetition. For example, if an imaginary ant
was to walk along the tiling a distance equal to the width of one tile, the tiling would
appear, to the ant, to be the same. In the diagram, this is shown by translating the
point of reference from A to B. The result of this translation suggests a nontrivial
isomorphism of the tiling. It is nontrivial because not all translations of a unit distance
will preserve the isomorphism of the tiling. This preservation of the tiling after
translation is called translational symmetry. In a similar fashion, if the tiling were
rotated 90 degrees about A, an isomorphism of the tiling would again be obtained.
This is known as rotational symmetry, and A is the center of rotational symmetry.
Finally, if a tiling exhibits translational symmetry, then the tiling is said to be periodic.
The amount of translation required to preserve the isomorphism of the tiling defines
what is called the unit cell. The unit cell is a finite portion of the tiling that can
construct the entire tiling by being copied and translated. In our square tiling, a

9



CHAPTER 1. INTRODUCTION 10

A B

B'

Figure 1.1: An example of a tiling using a square as the only prototile. The shaded
tile shows an example of a prototile. The tiling has translational and rotational
symmetry.

sample unit cell could be defined as a group of four squares, shown in Figure 1.1
(there are, of course, other possibilities). It is obvious that this unit cell could be
used to tile the entire plane, and thus our square box tiling is periodic.

A tiling is non-periodic if there is no unit cell that can tile the plane using only
translations. An example of a non-periodic tiling would be one where the prototiles
were either a square or an isosceles triangle equal to half the square cut along its
diagonal, as shown in Figure 1.1. Using these tiles, we could tile the plane as in
Figure 1.1, but change one of the squares into two triangles. This would disrupt the
periodicity of the tiling, because any unit cell that contained the triangles could not
be used to tile portions of the plane without the triangles, and any unit cell that
didn’t have the triangles could couldn’t account for the two triangles that exist in the
tiling.

However, this non-periodic tiling is non-periodic only because we cleverly tiled
the plane so that no nontrivial isomorphism could exist. Is there any set of prototiles
such that all tilings must be non-periodic? Such sets do exist, and they are called
aperiodic.



CHAPTER 1. INTRODUCTION 11

Figure 1.2: One possible unit cell in the box tiling. The shaded region shows how
four tiles can be combined into a larger unit cell which tiles the plane.

Figure 1.3: Prototiles that could generate a non-periodic tiling. Each triangle tile is
the same as half of the square tile.



CHAPTER 1. INTRODUCTION 12

1.2 Aperiodic Tilings

The first set of aperiodic tiles was discovered in 1964 by Robert Berger. His set
contained over 20,000 prototiles, which was a slightly unwieldy number to work with.
Many people worked on reducing the number of tiles required for aperiodicity, and
in 1974 Roger Penrose [Pen74] discovered a set of only two prototiles that tiled the
plane aperiodically.

For a time, aperiodic tilings were considered only as an interesting problem in
recreational mathematics, due to their strange properties. For example, any finite
portion of an aperiodic tiling can be found infinitely many times in infinitely many
tilings. Penrose tilings in particular exhibit icosahedral (five-fold) symmetry, which
is not found in any kind of periodic tiling.

However, in 1984, a new form of matter was discovered that had icosahedral
symmetry. Since icosahedral symmetry cannot be found in periodic tilings of space,
this new form of matter could not be described as a crystal, because crystals were
modeled purely on periodic structures. On the other had, the new material could not
be like glass, which has no structure whatsoever, because the new matter appeared
to possess an underlying structure. The new form was called a quasicrystal in an
attempt to capture both the structured and non-crystalline properties of the matter.

Aperiodic tilings are a potential model for this new form of matter, since they
exhibit similar properties. Danzer [Dan89] constructed a three-dimensional ana-
log to the two-dimensional Penrose tiles, thereby furthering the modeling of three-
dimensional quasicrystals. Our research seeks to better understand the properties
of two-dimensional tilings, in hopes that the concepts can be applied to their three-
dimensional counterparts.

1.3 Penrose Tilings

Returning to two dimensions, we will examine Penrose tilings more carefully. Recall
that Penrose discovered a set of only two tiles that tile a plane aperiodically [Pen74].
While he discovered more than one set of tiles that does this,1 we will use the set
composed of “Kites” and “Darts”, which are names for the prototiles shown in Fig-
ure 1.3.2 At first glance, the tiles do not appear to guarantee aperiodic tilings, as
they can clearly be fit together to form a rhombus, which would tile the plane in a
periodic fashion. Therefore, there are “matching rules” that dictate the ways that

1“Thin” and “thick” rhombi form the other common set of prototiles.
2Unless otherwise noted, all figures are drawn to scale.



CHAPTER 1. INTRODUCTION 13

Figure 1.4: Penrose Kite (left) and Dart (right), with vertices colored to enforce
matching rules.

the Kites and Darts fit together. These rules prevent the formation of rhombi. The
simplest way to enforce the matching rules is to decorate, or mark, the vertices of the
prototiles as shown in Figure 1.3. We augment the earlier side-to-side requirement
in tilings to also require the matching of these markings. Following these rules will
ensure that a legal Penrose tiling is being constructed.

If these matching rules seem like an unnatural restriction, there is another way to
think about them. One can imagine that instead of decorating the vertices, notches
were cut out of the sides of the tiles to ensure that the tiles only fit together in certain
ways. This too would force aperiodicity, and it would be based solely on the shapes
of the tiles. However, since such a “jigsaw” approach makes our diagrams harder
to read, we will use decorative matching rules to keep our prototiles as simple as
possible.

To prove that his tiles completely tile the plane, Penrose used two processes that
Conway calls inflation and deflation [CL90]. Simply put, inflation is the process of
combining prototiles in such a way that they form new tiles that are larger versions
of the original prototiles. Deflation is just the opposite—taking tiles and dividing
them into smaller tiles. Put another way, inflation and deflation on a tiling is similar
to iterating over a self-similar fractal. As one “zooms in” (or out), similar structures
appear on different scales. Penrose uses this property of his tilings to show that any
arbitrarily sized two-dimensional surface may be covered by a legal Penrose tiling.3

Briefly, the proof works as follows: suppose we want to cover an arbitrary-sized disc
in two-dimensional space. We simply select a Penrose tile that is large enough to
cover the whole disc, forming a Penrose tiling composed of a single tile which covers
the disc. Finally, we repeatedly inflate the tile until the sub-tiles are at the scale that
we desire. Since we can cover a disc of any size with a Penrose tiling, if we allow the

3For a rigorous proof, consult Grünbaum [GS87].



CHAPTER 1. INTRODUCTION 14

disc to become infinite in size we find that a Penrose tiling can tile the entire plane.

1.4 Legal Tilings

A legal Penrose tiling is one where the tiles have been fit together with no gaps or
overlaps, and also one where no matching rules have been violated. A legal set of
Penrose tiles is set of tiles that form a finite subset of a legal Penrose tiling. In any
legal set of Penrose tiles, the lines that compose the tiles intersect at the vertices
of the tiling. There are only a few configurations of tiles that can form around any
vertex in a legal Penrose tiling. More specifically, Grünbaum [GS87] proves that there
are only seven, and these seven configurations are shown in Figure 1.4 (the names are
those used by Conway).

Because there are only certain legal vertex configurations, we can say that a tile
is forced if there is a partial vertex configuration in a tiling that only one tile could
possibly fill. Because a Penrose tiling covers the entire plane, if we are given any
legal set of Penrose tiles it is always possible to add more tiles—one at a time—and
continue forever to tile the plane. However, we cannot add tiles in a random or
haphazard way; we must choose where and which tiles to add carefully to prevent
problems from developing later in the tiling. The aforementioned forced tiles help us
complete tilings, as we know that we can place tiles in those spots without affecting
the legality of the tiling.

Socolar [Soc91] developed rules that would allow a defect-free tiling to always be
generated, using only information available locally at the vertex one wished to add a
tile. His method involved placing new tiles adjacent to an already existing patch of
tiles (as a base case, one starts with a single tile). If there exists a space along the
perimeter of this patch of tiles where a tile would be forced, we place the forced tile
there. When there are no more forced tile positions, methods are provided to add
tiles to the patch that will ensure consistency with the tiling rules. Once new tiles
are added, more forced positions emerge, and the tiling can continue to be grown.

Socolar’s methods were primarily motivated by a desire to relate Penrose tilings
to quasicrystals. When physical crystals grow, we have no reason to believe that they
encode any of the ultimate structure they are creating. Thus, any new growth must
be made given only the information that exists at the point where growth is occurring.
For this reason, Socolar restricted his rules so that they involved only information
that could be found locally at a particular vertex. While his rules guarantee a legal
tiling, they do not allow us to force a tiling to take any particular shape. If we wanted
to grow a tiling with, say, a Kite forced at a specific point in the plane, we could not



CHAPTER 1. INTRODUCTION 15

Ace Sun

S
�

tar

Queen

KingJack

Deuce

Figure 1.5: The seven legal vertex configurations in a Penrose tiling.



CHAPTER 1. INTRODUCTION 16

do so without first generating a tiling that forced the Kite and then recording all the
“decisions” that forced that particular tile. Yet, if an analysis of tilings is performed,
patterns clearly emerge that suggest an underlying structure to Penrose tilings that
are not based solely on local rules.

It is these non-local rules which will allow us to analyze Penrose tilings on a much
larger scale, and also to allow us to manipulate and study them with greater ease.



Chapter 2

Background for Research

Penrose tilings are interesting to researchers in several fields for several different rea-
sons. Regardless of the field of study, however, being able to easily manipulate and
study Penrose tilings is a universal concern. Although Penrose tilings are infinite in
nature, we would like to be able to store them in a finite device, such as a computer.
This research attempts to discover some of the underlying structure of Penrose tilings,
so that the tilings can be stored and manipulated as efficiently as possible.

In addition to being able to store tilings, this research also aims to learn more
about constructing the tilings themselves. Because we are reducing an infinite num-
ber of Penrose tiles to a finite amount of information, there will necessarily be some
computation required to generate the information that is not explicitly stored, as is
usually the case in such situations. This research will investigate methods of con-
structing Penrose tilings for study and research.

This work seeks to expand directly on the work of Linden Minnick [Min98] by
searching for a general algorithm to find the tiles forced by arbitrary patches of tiles,
and also a method to regenerate a complete tiling when given only the minimal infor-
mation needed to represent the tiling. Algorithms will be developed and implemented
in software to aid in this task.

2.1 Ammann Bars: A Non-Local Aid

Socolar noted that his rules were in agreement with what are called Ammann bars
(or Ammann lines). Ammann bars are markings that can be superimposed on tiles
and that verify the matching rules. A set of Penrose tiles with Ammann markings are
shown in Figure 2.1. When tiles are placed adjacently, the adjacent Ammann bars

17



CHAPTER 2. BACKGROUND FOR RESEARCH 18

Figure 2.1: Penrose Kite (left) and Dart (right) with Ammann markings.

must be collinear. The final result, in an infinite Penrose tiling, is that the Ammann
bars form infinitely long parallel lines. Because of the different orientations of the
tiles, there are actually five “sets” of Ammann bars, where a “set” is a group of lines
that are all parallel to one another. The five sets in a Penrose tiling are rotationally
separated by angles that are multiples of 72◦. This has the added benefit of reinforcing
the idea of isohedral symmetry in the tiling.

Ammann bars can also be thought of as a way of placing Penrose tiles. We
can imagine drawing the Ammann bars onto the plane first, and then putting down
Penrose tiles that agree both with the other tiles and with the Ammann bars. If one
has five complete sets of Ammann bars in a plane, then the intersection and spacing
of those lines will force the Penrose tiles into specific locations, because the tiles
must match the lines in the ways shown in Figure 2.1. In this way, the Ammann bars
become the important part of the tiling, and the Penrose tiles become the decorations.
If the Ammann bars can be generated so that they force legal tilings, then the Penrose
tiles impart no new information.

In fact, the Ammann bars can be generated so that they force legal Penrose tilings.
Each set of parallel Ammann bars in a legal Penrose tilings forms what Conway calls
a musical sequence. A musical sequence is a set of parallel lines, where each line must
be separated from its neighbor by one of two specific intervals. More precisely, the
distance between lines can be either a short distance, or a long distance. The short
and long distances themselves are related in the following way:

Let |L| and |S| stand for the length of a “long” (L) and “short” (S) interval,
respectively. Let #L and #S stand for the number of “long” and “short” intervals,
respectively, in a Musical sequence. Grünbaum [GS87] has shown that if n is the total
number of intervals in the musical sequence, then

lim
n→∞

#S

#L
≈ |S|

|L|
=

1

τ



CHAPTER 2. BACKGROUND FOR RESEARCH 19

τ is the Golden Mean, which is an irrational number1 whose precise mathematical
definition is 1+

√
5

2
. The number has been known since at least the time of the ancient

Greeks, and it is often found in nature [Dis59].
This “golden” relationship hints at a pattern in the sequence of intervals. In fact,

the sequence of intervals between lines is also aperiodic, though in one dimension
instead of two. And just like Penrose tilings, there are “legal” ways to arrange the in-
tervals between bars. A sequence can be checked for legality through several different
means, many of which are outlined by Minnick (see below).

Assuming one knows how to generate legal sequences, one would find that the
pattern of L’s and S’s does not repeat periodically. In generating musical sequences,
certain choices of intervals cause certain bars to be forced at a specific distance away
from the other bars in order to preserve the legality of the sequence. Thus, we also
have a concept of forced and unforced bars, just as we do forced and unforced tiles in
a Penrose tiling.

By generating Ammann bar sets and intersecting them in the plane, it should
be possible to generate Penrose tilings. Given this approach, solving the problems
of musical sequences must be completed before attempting to solve the problems of
Penrose tilings.

2.2 Minnick’s Thesis

Minnick [Min98] combined the techniques described above so that knowledge about
the empire of tiles could be expanded. The empire of a tile or set of tiles is the group of
tiles that are forced by the presence of the initial set. Socolar’s rules were insufficient
to describe the empire of tiles because they only considered local conditions. His rules
would show all locally forced tiles at any given vertex, but did not attempt to show
nonlocal tiles which might also be forced. Grünbaum and Shephard performed a brief
analysis of the relationship between Ammann bars and forced tiles in an attempt to
find tiles that were forced non-locally. They noted that certain shapes formed by the
intersections of Ammann bars always forced certain tile configurations. They also
published figures showing some of the non-local tiles that were forced. While the
known empire had been expanded, it still was not complete.

Minnick expanded on these empire-finding efforts. First, she described several
ways to generate legal musical sequences, and provided proofs for the methods. The
method we rely on in this paper relies on her geometric method to generate and verify
musical sequences. The geometric method always allows for the storage of a musical

11.618033988749894848204586834365638117720309179805762862135448622705260462 . . .



CHAPTER 2. BACKGROUND FOR RESEARCH 20

sequence (which is infinite) in a finite amount of space. Additionally, it is easy to
force arbitrary bars in the sequence, as well as check arbitrary bars to see if they are
forced.

Minnick also performed a close analysis of the Penrose tilings’ relationship to
the Ammann bars. She constructed a set of distances that related points on the
prototiles to the Ammann bars, and used these distances to compute how certain
sets of tiles would force sets of Ammann bars. She constructed diagrams that showed
how the Ammann bars would be forced around all seven of the legal Penrose vertex
configurations, and also found partial empires of these vertex configurations. Finally,
she demonstrated that certain configurations of tiles directly forced Ammann bars
that did not touch the tiles. This result was important because it demonstrated
that there was a relationship between Ammann bars and Penrose tiles that worked
over a distance, rather than the tiles only forcing bars that passed through the tiles
themselves. Her results also suggest that there exist more rules for Penrose tilings
that may depend on even larger groups of tiles.

Minnick constructed a high-level algorithm for finding part of the empire of an
arbitrary patch of tiles. She implemented the algorithm by hand for certain vertex
configurations to demonstrate that her methods would find forced tiles that had not
yet been discovered. She did not come up with a general implementation of her
algorithm, however, and so could not generate arbitrary empires. Additionally, while
her algorithm should generate the empire of a set of tiles, it assumes that we know all
the forcing rules that might exist for Penrose tilings. We do not know if we possess
all the forcing rules, so Minnick’s algorithm does not necessarily produce complete
empires yet.

2.3 Proposed Work

The efforts described in this work seek to build directly on Minnick’s work. We will
attempt to implement her general algorithm in a systematic way, so that we can find
the empire of any arbitrary patch of tiles. While Minnick has provided an excellent
starting point, her algorithms are described at a very high-level. Much work must be
done to actually implement them in a programming language.

Specifically, the basic functions that need to be written in software are these:

1. Representation of a musical sequence, with the ability to find and force arbitrary
bars,

2. Interaction of five musical sequences in a plane, as they would appear in a



CHAPTER 2. BACKGROUND FOR RESEARCH 21

Penrose tiling,

3. The ability to find intersections of forced musical sequence bars,

4. The ability to find patterns in a field of intersection points,

5. The ability to analyze the patterns and fill in missing or incomplete information,
and

6. The ability to draw the forced Penrose tiles on top of the musical sequences.

With the implementation of the algorithms, we should be able to generate partial
empires of arbitrary sets of tiles (partial because we do not know all the forcing rules
yet). Using this as a tool, we can generate empires that would be too difficult to
construct by hand, and study these empires for new patterns and rules. We hope to
better understand Penrose tilings, and find even better ways to construct and store
them using computers.



Chapter 3

Musical Sequences

Musical sequences are one-dimensional aperiodic structures. In many ways they are
the one-dimensional analog to Penrose tilings because they contain similar properties
of similarity, inflation, deflation, and, of course, aperiodicity. Musical sequences can
be represented in a number of different ways, depending on the context. To prevent
confusion, we will use a consistent notation for all musical sequences, and introduce
the meaning of the notation at the appropriate times.

3.1 Theory

One possible representation of a musical sequence is a string over the two-symbol
alphabet {L, S}. The symbols in a musical sequence cannot be arranged in an
arbitrary fashion; there are certain orderings of these symbols that are not allowed.

3.1.1 Inflation

Using this symbolic representation of a musical sequence, the simplest musical se-
quence is the empty string ilon. A more useful trivial string is the single symbol S,
which is a valid musical sequence by definition. Starting with this single S, a new
musical sequence can be built by using a process called inflation. Inflation means
rewriting all the symbols in a musical sequence using a parallel rewriting scheme
called an L-system. The rewrite creates a longer string with all of the symbols having
been rewritten simultaneously. The rewriting rules for inflation are:

L→ LS

S → L

22



CHAPTER 3. MUSICAL SEQUENCES 23

S
L
LS
LSL
LSLLS
LSLLSLSL

Figure 3.1: Inflation of a musical sequences, beginning with S.

Note that the rules must be applied in parallel to all of the symbols in the string.
A single L cannot become LL during one rewrite, but must rather go from L to LS
in one step, and then from LS to LSL in the next step. Another way to think of
the rewriting rules is by imagining that the symbols represent rabbits: S is a baby
rabbit, and L is an adult rabbit. In every unit of time, all of the adult rabbits each
create a single new baby rabbit (L→ LS), while at the same time any baby rabbits
mature into adults (S → L). All the rabbits change simultaneously, or “in parallel.”

It is always possible to inflate a musical sequence to create a longer musical se-
quence because the validity of a musical sequence is not changed by inflation [GS87].
Therefore, if we start with a valid musical sequence, we can repeatedly apply the
inflation rules to obtain a musical sequence of arbitrary length. Because the single
symbol S is a trivially valid musical sequence, we may begin with it and inflate re-
peatedly to obtain other valid musical sequences. It is important to note that not all
finite portions of musical sequences can be generated in this way unless the sequence
generated has infinite length. Only an infinite musical sequence will contain all finite
substrings, much in the same way that only an infinite Penrose tiling will contain all
finite patches of Penrose tiles.

Figure 3.1.1 shows a sequence that is inflated from the single symbol S. Note that
after the first rewriting, this sequence is exactly the same as one beginning with the
single symbol L.

3.1.2 Musical Sequence Rules

After a moment of careful study we see that there are never any consecutive S symbols
in a musical sequence, nor are there ever more than two consecutive L symbols. These
are rules of any musical sequence, which will be referred to as consecutive symbol rules.
They may be stated as follows:

Theorem 1. No valid musical sequence may have more than one consecutive S sym-



CHAPTER 3. MUSICAL SEQUENCES 24

bol.

Theorem 2. No valid musical sequence may have more than two consecutive L sym-
bols.

Proof. To show that there can never be consecutive S symbols, we can think of the
L symbols as “generators” for the sequence. Only L symbols create new symbols,
and they do so in a very specific manner. L symbols create a single new S symbol to
the right of the L symbol during every rewrite of the string. Additionally, all extant
S symbols turn into L symbols during every rewrite. These two rules work together
to prevent two S symbols from ever being next to each other. Because S symbols
are always created to the right of a L symbol, there is no way for two L symbols
to produce adjacent S symbols during the same rewrite; one of the L symbols must
necessarily interrupt the S symbols. Because all S symbols become L symbols during
every rewrite, there is no way for two S symbols created during different rewrites to
be next to each other; one would have been changed to a L before (or during) the
other’s creation.

Once we have shown that there cannot be consecutive S symbols, showing that
there cannot be more than two consecutive L symbols becomes quite easy. As demon-
strated above, L symbols always generate a new S symbol, so L symbols will always
insert a S between themselves after a rewrite. The only reason why there exist con-
secutive L symbols at all is because the S symbols become L during on rewrite, but
do not produce a new S. During this single step, a L can exist without a S next to it.
However, in the next step, this new L will begin producing S symbols, thus preventing
further accumulation of consecutive L symbols. Since there cannot be consecutive S
symbols (shown above), we can have at most two consecutive L symbols: one which
just changed from a S to a L during this rewrite, and one to it’s right which has been
a L prior to this rewrite. Any other L would produce a S (thus interrupting the con-
secutive L symbols), and we know that another S symbol is impossible. Thus, there
cannot be more than two consecutive L symbols in a valid musical sequence.

The inflation rules, along with the consecutive symbol rules, can be used to show
the relative frequency of the two symbols. We know that for every S there must be
at least one L, so we would expect the ratio of the number of S symbols (#S) to the
number of L symbols (#L) to be less than one. Additionally, we know that there
cannot be more than two consecutive L symbols, so we would expect the same ratio
to be greater than 1

2
. In fact, Grünbaum and Shephard have shown that for any

infinite musical sequence



CHAPTER 3. MUSICAL SEQUENCES 25

#S

#L
=

1

τ
= (1− τ)

These relationships hold true in the limit: when the sequence has infinite length we
say the sequence is prototile balanced1 and these relationships hold. In finite portions
of musical sequences, these relationships are approximated, but not perfect.

These rules, when combined with our notion of inflation, give us a tool that can
confirm the validity of musical sequences. By looking at a string and verifying that it
does not violate the rules of consecutive symbols, we know that the string is possibly
musical. Another step is required, however, to verify that the string is truly musical.

3.1.3 Deflation

Because all musical sequences can be constructed from a single symbol, we should be
able to trace the path that created any valid musical sequence. If we can, in a sense,
“run inflation backwards,” then we can verify a musical sequence. To do so, we use
rules which define deflation, the opposite of inflation:

LL→ S

S → L

L→ ilon

Deflation is exactly like inflation in that the rewriting rules must be applied in
parallel to the entire string, and only one rule may be applied to a group of symbols
in a single rewrite. In other words, we cannot rewrite LL to S and then rewrite S to
L all in a single rewrite.

Deflation always preserves the validity of a musical sequence [GS87], and this
allows us to verify musical sequences. Given an arbitrary string, if we can repeatedly
deflate it until we are left with the empty string ilon, then the original string must
be a valid musical sequence. At no time during the deflations can the string violate
our consecutive symbol rules; if it does, then the string is not a musical sequence.
If we did not make sure that the string always obeyed our consecutive symbol rules,
then we could accidentally deflate an invalid string into a valid one. For example,
LLL could be deflated to S, thus transforming an invalid string to a valid musical

1prototile balanced implies that the limit of the ratio is finite and nonzero



CHAPTER 3. MUSICAL SEQUENCES 26

LSLLSLSL
LSLL
LS
L
ilon

Figure 3.2: Deflation of the musical sequences from Figure 3.1.1.

LSLLSLLL
(More than two consecutive
L symbols)

LLSLLSLL
SLSLS
LLL
(More than two consecutive
L symbols)

Figure 3.3: Examples of invalid musical sequences. The left example is trivially
invalid, but the right example requires several deflations before the flaw becomes
apparent.

sequence. We must therefore check the validity of the musical sequence after each
step of the deflation.

To illustrate this point, we will verify the musical sequence constructed in Fig-
ure 3.1.1. Because the string was built using only inflations from the trivial (valid)
case, the string must be a valid musical sequence. Figure 3.1.3 clearly shows that the
string does deflate to the empty string ilon, and the reader may readily verify that
none of the intermediate strings violate our consecutive symbol rules.

As for invalid strings, consider the two invalid strings in Figure 3.1.3. The one
on the left is clearly invalid because it violates our rule of having no more than two
consecutive L symbols. The one on the right, however, is more troublesome. The
string deflates several times before our consecutive symbol rule is violated. This
demonstrates that verifying a string requires deflating it until all that remains is the
empty string; if we stop before that point then there may be an inconsistency in the
sequence that will not become apparent until further deflation.

3.1.4 Forcings

The consecutive symbol rules place restrictions on which patterns of symbols may
exist in a musical sequence. Certain sequences cannot exist because they cannot be



CHAPTER 3. MUSICAL SEQUENCES 27

deflated. The sequences that can be deflated completely appear to contain patterns
of symbols, with the patterns being the result of certain symbol orderings being
disallowed. For example, in a musical sequence we might see a lot of LL pairings,
but no SS pairings, because the sequence rules allow for the former and disallow
the latter. These patterns give the appearance of forcings in the musical sequence,
because certain symbols always follow others. Consider the sequence below:

. . .LSLL . . .

If we were to add a new symbol to the right-hand side of this musical sequence, the
only symbol we can use is a S, because adding a L would violate the rule preventing
more than two consecutive L symbols. Because only one symbol can possibly be used
at this point in the musical sequence, we say that this symbol is forced. Essentially,
the existing symbols combined with the sequence rules demand the appearance of an
S.

Forcings are much more than trivial rule-following. As Figure 3.1.3 showed, flaws
in a musical sequence may not become apparent until several deflations have been
performed. Because of this, placing one symbol may affect the placement of another
distant symbol on the sequence, even though they do not appear to have any rela-
tionship to each other. As deflation s are performed, symbols that are far apart are
brought closer together until they are eventually near enough to affect each other
through the consecutive symbol rules. Because of this, placing a symbol in an infinite
sequence forces not only adjacent symbols, but also an infinite number of non-local
symbols.

3.2 Ammann Bars

Now that we have defined the basic properties of musical sequences, we will remove one
layer of abstraction and discuss Ammann bars. Ammann bars are musical sequences
expressed as sets of parallel lines rather than as symbolic strings. Instead of using L
and S to represent the two possible states in a musical sequence, we use the space
between adjacent parallel lines to encode this information. In a sequence of Ammann
bars, the space between any two adjacent lines can only be one of two lengths. One
length is called long and the other is called short. As one would expect, long intervals
are analogous to the L symbol the string representation, and short intervals represent
S symbols.

As an example, Figure 3.2 shows the musical sequence from Figure 3.1.1 as a
sequence of Ammann bars. It now becomes convenient to speak of intervals between



CHAPTER 3. MUSICAL SEQUENCES 28

� � � � � � � �

Figure 3.4: The musical sequence LSLLSLSL represented using Ammann bars. The
intervals between bars are marked with their symbolic equivalents to show the rela-
tionship between Ammann bars and pure symbolic musical sequences.

bars, rather than symbols. For consistency, however, we will refer to these intervals
using the familiar symbols L and S. Note that sequences of Ammann bars are musical
sequences; the bars simply represent the sequences in a graphical fashion. Throughout
this work, we will refer to “a sequence of Ammann bars,” to denote that it is different
from our symbolic representation used earlier. The reader should simply be aware
that a valid arrangement of Ammann bars always implies a musical structure.

Ammann bars are particularly useful when we visualize the forcing concept dis-
cussed earlier. When a forcing occurs in a sequence of Ammann bars, two things are
forced. First, a particular Ammann bar is forced to be in a certain position relative
to all the other forced Ammann bars. Secondly, the interval between all these forced
bars is forced to be a certain length: either L or S. While these are really two different
ways of describing the same phenomenon, it is sometimes more convenient to speak
of forcing bars or forcing intervals, and we will freely switch between the two different
terms. We will say that an interval is forced when we are speaking about the relative
spacing of bars, but the absolute positions of the particular bars are not important.
We will say that a bar is forced when we are forcing a specific bar into a position,
but the interval it forms is not important.

Figure 3.2 illustrates these two ways of forcing. We can force bars in any of the
five configurations shown at the top of the figure if we desire specific bars to be in
specific places. The last portion of the figure shows that we can also just force the
two bars on the left and right sides of the figure, thus forcing the interval between
them to be a certain distance. In this case, we get an interval of a specific length,
and the actual ordering of bars in between does not matter.



CHAPTER 3. MUSICAL SEQUENCES 29

�

� � � � � �

� � 	 
 �

�

 � � �� �

� � � ��

� � � � � � �

� ! "# $

Figure 3.5: The distance between two Ammann bars, represented in terms of L and
S. Above, all the possible orderings of symbols that fit between two bars forced at
a distance (4L+2S) from each other. Notice that the middle bar (dark grey) always
appears in the same place, even though we did not explicitly force its position. This
bar is forced.



CHAPTER 3. MUSICAL SEQUENCES 30

3.3 Five-Fold Interactions

Ammann bars are two-dimensional; they are sequences of parallel line segments with
space in between them. Additionally, the long and short intervals between the bars
have a relationship between them. In a sequence of Ammann bars, a long interval is
defined as being τ times as long as a short interval. Once we have picked an arbitrary
length for either a long or short interval, all other distances in a sequence of Ammann
bars are known. If we use |L| to denote the length of a long interval, |S| to denote
the length of a short interval and n to denote the total number of intervals in the
sequence, then we can sum up what we know about Ammann bars as follows:

lim
n→∞

#S

#L
≈ |S|

|L|
=

1

τ
= (1− τ)

Ammann bars are more than just graphical representations of musical sequences.
They are the basis of an underlying pattern for Penrose tilings. In any Penrose tiling,
five sequences of Ammann bars interact in the plane, dictating where the tiles should
be placed. Figure 3.3 shows how the tiles and bars interact. The five Ammann bar
sequences are arranged at 72◦ angles. The intersections of the bars in the sequences
define where the tiles in the Penrose tiling must go.

The direct relationship of Ammann bar position to Penrose tile position also links
forced Ammann bars to forced Penrose tiles. If we force certain bars in the five
sequences of Ammann bars that comprise a Penrose tiling, then we have forced the
positions of actual tiles in the tiling as well. This property is what our research is
based on: by exploiting the underlying structure that the Ammann bars provide, we
can determine the positions of forced tiles, and thus the empires of Penrose tiles.

3.4 Extended Theory

In the next chapter we will discuss in depth the relationship of Ammann bar for-
mations to Penrose tile placement. For the moment, assume that some method of
placing Penrose tiles on top of Ammann bars exists. If this is the case, then finding
the empires of tiles can be outlined as follows:

1. Find the Ammann bars forced by our initial set of tiles.

2. Find the Ammann bars that are in turn forced by these initial Ammann bars.

3. Place the deducible tiles on top of these newly forced Ammann bars.



CHAPTER 3. MUSICAL SEQUENCES 31

Figure 3.6: An example of how Ammann bars and Penrose tilings interact. On the
top, five sequences of Ammann bars. On the bottom, a Penrose tiling. The center
shows the two superimposed.



CHAPTER 3. MUSICAL SEQUENCES 32

� � � � � � � � � � � � � � � � � �

� 	 
 � �  � � � � � � � �

Figure 3.7: An unforced musical sequence represented as Ammann bars, and a musical
sequence with a single interval forced.

At a very high level, that is what our research deals with. In the next chapter
we will discuss the first and third s outlined above, which relate the Ammann bars
to the tiles. Right now, what interests us is finding all the Ammann bars that are
forced by other Ammann bars.

3.4.1 Forcing Arbitrary Ammann bars

A good way to imagine a musical sequence represented by Ammann bars is by thinking
of the sequence as initially unforced, as shown in Figure 3.4.1. In this state, there is
a single Ammann bar, called the zeroth bar. This bar is used as a point of reference
only; it does not force anything by itself because forcing requires two bars (two bars
enclose an interval, and intervals are what represent the musical sequence). This
zeroth bar can be thought of as the center of the sequence, with the remainder of the
sequence continuing infinitely in either direction from the center.

Suppose that we now force a new bar in the sequence. By adding a bar, we have
forced an interval somewhere in the set to be a certain length. As demonstrated
earlier, a forcing in a musical sequence causes an infinite number of other forcings
to occur. But how do we know which intervals are forced? Forced intervals are not
trivial, because long-range defects in the musical sequence may not become apparent
until several deflations have been performed. So far, we have only described a method
of determining whether a sequence is valid or not. We have not described a way to
force arbitrary intervals, because the methods we have discussed so far (inflation,
deflation, and consecutive symbols) are all local, and do not adequately deal with



CHAPTER 3. MUSICAL SEQUENCES 33

� � � ��

�

�

�

�

�

�

�

Figure 3.8: An empty integer lattice.

long-range effects.

3.4.2 Minnick’s Work

Minnick [Min98] researched arbitrary forcings in musical sequences, and refined one
algorithm in particular. The algorithm uses a geometric representation of the musical
sequence, and allows for the location and creation of arbitrary forcings in a constant
amount of time.

To visualize the algorithm, we begin with an integer lattice. This lattice is com-
prised of a Cartesian coordinate system, with a point placed at every integer pair.
A lattice is shown in Figure 3.4.2. The x-axis integers represent bar numbers, with
the zeroth bar at the x value 0. The space between x-axis integers represents the
intervals between bars. Thus, the bar immediately to the right of the zeroth bar is
at (x = 1), and the first interval of the sequence is bounded by the bars at (x = 0)
and (x = 1).

Now we draw a line ` through the integer lattice, with slope τ and y-intercept
between 0 and 1, as shown in Figure 3.4.2. For every x value on the lattice, take the
y value of the line `, and truncate it to an integer value. Because the slope of ` is τ ,
which is between 1 and 2, the difference between truncated y values will be either 1



CHAPTER 3. MUSICAL SEQUENCES 34

or 2. A difference of 1 represents a short interval, and a difference of 2 represents a
long interval. Figure 3.4.2 shows this translation from a geometric line to a symbolic
musical sequence.

Therefore, a single line of slope τ defines an entire musical sequence in this geo-
metric system. If we want to find a particular interval, we need only to determine
the difference between two y values on the integer lattice. For example, if we wanted
to find the interval distance between the 3rd and 4th bars in Figure 3.4.2, we would
compute the truncated y values at bar 3 (4) and at bar 4 (6) and take the difference
(2). The difference tells us that the interval is long. Note that this calculation de-
pends only on the y-intercept of the line; no other information about surrounding
intervals is required.

The example described above shows a completely forced musical sequence. All of
the values are determined by the line `, and all of these values are forced. In order
to represent an unforced sequence, we must introduce some kind of uncertainty.

Minnick accomplishes this by using two lines instead of one. Returning to our
integer lattice, suppose we have two lines `0 and `1, both with slope τ . Let us also
suppose that the y-intercept of these two lines initially differ by exactly 1: `0 has a
y-intercept of 0 and `1 has a y-intercept 1. This is shown in Figure 3.4.2. These two
lines effectively bound the set of all possible musical sequences.

Under this representation, in order for a bar to be forced at any particular x value,
the truncated y value at that point must be the same for both lines `0 and `1. In this
initial configuration, no bars are forced because any y value for `0 will always be one
less than the y value for `1.

To force a bar under this system, the y-intercept of one of these lines must be
changed. Changing the y-intercept causes the entire line to move, and moving the
line allows us to change the y value at any point. Only two changes are possible: `0

can have its y-intercept raised, or `1 can have its y-intercept lowered. Because of this,
the y-intercepts of the lines are always moving closer together, and in the limit they
will become a single line with one y-intercept. When this happens, we have a single
line just like the one in Figure 3.4.2, and this single line defines a completely forced
musical sequence. But so long as the two lines are different in some way, there are
some bars in the musical sequence that are not forced.

When we force a bar, the intercept of one of the lines is moved just enough to force
the y value at that bar to agree with that of the other line. Consider Figure 3.4.2:
after truncation, `0 has a y value of 4 and `1 has a y value of 5. In order to force this
bar, we must either raise `0 until its truncated y value becomes 5, or we must lower
`1 until its truncated y value becomes 4.

Raising `0 has the effect of making the interval between the bar we are forcing and



CHAPTER 3. MUSICAL SEQUENCES 35

� � � ��

�

�

�

�

�

�

�

� � 	 � 

�

�

� � 	 � 

�

�

� � 	 � 

�



� � 	 � 

�

�

� � � ��

�

�

�

�

�

�

�

y
	 � � � � � � �

y
	 � � � � � � �

� � � � � � � � � � � � �  !

Figure 3.9: Left: An integer lattice with a line of slope τ through it. Right: The
line with the y values truncated to integers. Bottom: the integer values converted to
interval symbols



CHAPTER 3. MUSICAL SEQUENCES 36

� � � ��

�

�

�

�

�

�

�

� 	


 �

Figure 3.10: A lattice with two lines with slope τ `0 and `1, with y-intercepts 0 and
1.



CHAPTER 3. MUSICAL SEQUENCES 37

the bar preceding it longer. Long intervals are created when two truncated y values
differ by two instead of one. In order to differ by two, the latter of the two y values
must be as high as possible, so that when it is truncated it is two more than the
truncated y value of the bar before it. Thus, to make the y value as high as possible,
we should raise `0.

Using similar reasoning, lowering `1 has the effect of making the interval between
the current bar and the bar preceding it shorter. Short intervals are created when two
truncated y values differ by one, and this is achieved by making the y value of the
current bar as low as possible. Thus, we should lower `1 to make a certain interval
shorter.

Using this method, we can force an arbitrary bar to be a relative distance away
from other bars. Note that we are not guaranteed to have an interval of the desired
length merely by moving `0 or `1. Moving a particular line only causes the sequence to
expand with a greater number of short or long intervals; the legality of the sequence
cannot be violated by moving one line or another.

Minnick’s system gives us the power to deal with forcings in a simple manner, as
well as giving us the ability to represent musical sequences in a compact form. The
geometric representation uses only two lines to represent an entire musical sequence,
yet these lines are sufficient to tell us where any, and all, forcings occur, as well as
allowing us to define new forcings of our choosing. Because Penrose tilings can be
represented as musical sequences in the form of Ammann bars, Minnick’s algorithms
form the base of our work to find the empires of Penrose tiles.

3.5 Pseudo-Code Implementation

Minnick’s geometric method is fairly straightforward, though actually implementing
it requires some work. The two major problems in the implementation phase are
efficiency and precision. We do not want to lose the efficiency of the algorithm; as
described above the forcing operations appear to take only constant time. Since
our work will rely heavily on these operations, we need to make them as efficient as
possible. Precision is important because the computer is a finite device, whereas the
conceptual algorithms assume infinite precision. In the algorithm, the lines `0 and `1

have y-intercepts between 0 and 1. Even small errors in these intercept values (caused
by rounding in the computer) could cause certain bars to be forced when they should
not be, or bars that should be forced to no longer be forced. For this reason, we want
to find some way of storing the positions of lines `0 and `1 using integer values.

To help with our implementation, we can modify the algorithm slightly so that



CHAPTER 3. MUSICAL SEQUENCES 38

� � � ��

�

�

�

�

�

�

�
� 	


 �

� � � ��

�

�

�

�

�

�

� � 	
 �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � �  ! " � � � # $

% & ' ( & ) * & + , , - . + / - & 0 1 2 % 3 4 5 1 4 1 2 % 3 4 5 1 6 7 8 9 7 : ; 7 < = = > ? < @ > 7 A B C 6 D E F B C 6 D G E F B

Figure 3.11: Forcing a bar in the integer lattice.



CHAPTER 3. MUSICAL SEQUENCES 39

it more readily adapts for use in a computer program. Our first step is finding a
representation of the lines `0 and `1 that are as accurate as possible. Instead of
storing the y-intercepts of the lines (which are real numbers), we can store the lines
in a point-slope form. Point-slope form requires that we know the slope of a line and
one point that the line travels through. Because we always know the slope of the
lines is (τ), we can write an equation to find an arbitrary y value yi for any arbitrary
x value xi:

yi = yint − ((xi − xint) ∗ τ)

We always know one point (xint, yint) because the lines are always raised or lowered
so that they truncate to a certain value. The best way to make a line truncate to a
particular integer value is to simply force the line to pass through that integer value.
In Figure 3.4.2, raising `0 to intersect (3, 5) is the smallest amount we can move `0

and still force the bar. To raise `0, instead of raising the y-intercept, we can just say
that the line now goes through the point (3, 5).

By storing a point that the line intercepts, we get to use integer values for our line
representation, which is preferable to using real coordinates to store the y-intercepts.
Our line representation is now as accurate as our choice of τ for the slope of the line;
all other values are perfectly precise. The only problem with this system is dealing
with the line `1. When we raised the line `0 to an integer, we knew that it would
truncate to that same integer (which was the property we wanted). However, when
we lower `1, we want to set its value so that it truncates to the next-lowest integer.
Returning again to Figure 3.4.2, if we chose to lower `1 to force it to truncate to 4,
we would want to lower `1 to be just below the value 5 (4.999. . . ). That way, the next
time we computed the y value for `1, it would truncate to 4, which is what we want.
However, the value 4.999. . . is not an integer, and we additionally cannot represent
“the number that is closest to 5 but still less than 5” in a finite computer system.
How then, do we represent the known intersection point of line `1?

We can overcome this problem by redefining how we truncate the y values of the
two lines. We always know which y value we are truncating, so the easiest solution
would be to treat truncations from the two lines `0 and `1 differently. Let’s create
two functions truncateOpen and truncateClosed which both truncate y values. The
qualifiers “open” and “closed” refer to the mathematical terms used when describ-
ing intervals. truncateClosed truncates a value simply by removing the non-integer
component of the value. truncateOpen also truncates a value in this way, unless the
value is already an integer. If the value is an integer, it returns (value− 1). The two
truncate functions are defined in Figure 3.5.



CHAPTER 3. MUSICAL SEQUENCES 40

truncateClosed Given a value v, returns a new integer i such that i ≤ v.

truncateOpen Given a value v, returns a new integer i such that i < v.

Figure 3.12: Definition of two truncation functions.

Having defined these two functions, we now have a precise method of representing
the two lines. We store the lines in point-slope form, using integer coordinates for
the points. When we want to determine if a bar is forced, we get the y values for the
lines `0 and `1, which we’ll call y0 and y1. To compare these values, we first truncate
them, using truncateClosed for y0 and truncateOpen for y1. Whenever we want to
force a bar, we set the y value of the intersection point to the desired value for `0, or
to one more than the desired value for `1. This will ensure that when the value is
truncated, it will fall to the correct value.

Figure 3.13 shows an implementation of the geometric representation of a musi-
cal sequence. The functions ForceBar, which forces an arbitrary bar in a musical
sequence, and IsBarForced, which returns true if a particular bar is forced in the
musical sequence, are shown. These functions will be used often when we begin to
query sequences of Ammann bars to find the empires of Penrose tiles.



CHAPTER 3. MUSICAL SEQUENCES 41

Start of Algorithm ForceBar

Input:

M, a musical sequence
xi, the x value of the bar to force, and
longer/shorter, whether the bar should be made longer or shorter

Output:

M, with bar xi forced.

Begin:

Store the y value of `0 at xi in y0

Store the y value of `1 xi in y1

Store truncateClosed(y0) in trunc0

Store truncateOpen(y1) in trunc1

if we are making a long interval
then raise `0 so that it intersects (xi, trunc1)
else lower `1 so that it intersects (xi, (trunc0 + 1))

End of ForceBar

Start of Algorithm IsBarForced

Input:

M, a musical sequence
xi, the x value of the bar to check

Output:

Returns boolean; true if the bar is forced, false if it is not

Begin:

Store the y value of `0 in y0

Store the y value of `1 in y1

Store truncateClosed(y0) in trunc0

Store truncateOpen(y1) in trunc1

return (trunc0 equal to trunc1)

End of IsBarForced

Figure 3.13: A pseudo-code implementation of the functions ForceBar and IsBar-
Forced.



CHAPTER 3. MUSICAL SEQUENCES 42

These algorithms give us the ability to quickly and easily deal with Ammann bar
forcings. The first part of our implementation is now complete. What remains for
us is to find the interactions between sets of Ammann bars in a plane, and then use
these interactions to find Penrose tiles.



Chapter 4

Forcing Rules

In a Penrose tiling, a forced tile is one that must be placed in a certain position in
order to preserve a legal tiling. Given an initial set, or patch of Penrose tiles, the set
of tiles that are forced by this patch are known as the empire of the patch.

A patch can have both local and non-local tiles in its empire. Locally forced tiles
share an edge with the patch, or with another locally forced tile, such that all the
locally forced tiles are contiguous with the initial patch. These tiles can be found
by studying a patch and discovering all the tiles that cannot be changed without
affecting the legality of the tiling. Figure 4 shows the simplest example of a local
tile forcing. The tiles shown form what is called the Ace configuration. It consists
of a single Dart and two Kites adjoining it. There are no other tiles that legally fit
into the concave portion of the Dart, and so those two Kites are always forced by the
Dart.

We cannot realistically use an approach of trying all possible neighborhoods in
order to find non-local forced tiles. As we move farther and farther away from the

Figure 4.1: The Ace configuration: an example of local tile forcing.

43



CHAPTER 4. FORCING RULES 44

Figure 4.2: Penrose Kite (left) and Dart (right) with Ammann bars superimposed.

initial patch, the number of tiles whose positions would have to be tried would increase
geometrically. Finding a forced tile at a large distance from the initial patch would
take too long if the methods used were exponential in nature.

Fortunately, we have a tool that will help us solve the non-local tile problem.
We know that Penrose tilings can be decorated by sequences of Ammann bars, as in
Figure 4. These decorations serve as an alternative to the matching rules in a tiling.

We can think of the Ammann bars as conveyors of information. Because the
Ammann bars are infinitely long, they affect the infinitely long “strip” of the tiling
that they stretch through. When we force a new Ammann bar, this forces an infinite
number of Ammann bars elsewhere in the plane. Our problem with the Penrose tiles
was that we would have had to try all possible tiles to find the forced ones. But we
can find forced Ammann bars without needing to try all the possible bar orderings,
as we saw in the previous chapter. Because Penrose tiles can be thought of as mere
decorations on top of the Ammann bars, we can convert Penrose tiles to Ammann
bars, compute the forcings, and then convert the Ammann bars back to Penrose tiles.
An overview of this process is shown in Figure 4. The initial set of tiles in (A) can
be represented as the Ammann bars in (B). But these Ammann bars force new bars,
in accordance to the rules discussed in Chapter 3. These new bars are shown in (C).
If we now mark the Ammann bars with Penrose tiles, we have new tiles that were
not in our initial set. These are the tiles that are forced by the initial patch, and are
shown in (D).

Our strategy now is to find exactly how the Ammann bars relate to the Penrose
tiles, so that we can begin with a patch of tiles, translate them to Ammann bars, find
new forced bars, and then draw any new tiles that may be forced.



CHAPTER 4. FORCING RULES 45

� �

� �

Figure 4.3: The four s in finding the empire of a patch of Penrose tiles, clockwise
from upper left: (A) The initial patch of Penrose tiles. (B) The Ammann bars forced
by the initial tiles. (C) The new Ammann bars forced by the initial bars. (D) The
new Penrose tiles overlayed on the new Ammann bars.



CHAPTER 4. FORCING RULES 46

Figure 4.4: An example of a false match, using insufficient information. On the
left, the Ace. On the right, the Queen. The bars in bold are shared by the two
configurations, and so are not sufficient to match a unique pattern.

4.1 Finding Forced Shapes

Given a sequence of Ammann bars, we must be able to find portions of the Ammann
bars that have features that we are looking for. For example, a certain arrangement
of Ammann bars might represent a Kite, and we want to be able to find objects like
Kites so that we can draw them.

Any arrangement of Ammann bars that has a feature we are looking for is called
a pattern. We scan through the sequences of Ammann bars looking for patterns, and
when we have found them we can take appropriate action, such as drawing an object
or forcing a new bar.

4.1.1 Finding Unique Patterns

In order to classify sections of the Ammann bars correctly, we must ensure that
the patterns we are searching for are unique. Figure 4.1.1 shows two possible tile
configurations that have the same Ammann bar configuration. If we were to match
on this pattern, assuming it was an Ace, we might cause problems later on if it turns
out that the pattern was actually part of a Queen.

The easiest way to define unique patterns of Ammann bars is to look at the
intersections of the Ammann bars. This gives us a clear way to find distances, as
well as angles between certain Ammann bars. The intersections form shapes that are



CHAPTER 4. FORCING RULES 47

similar to constellations in the night sky. In order to find a pattern, we must look for
points that are certain distances away from each other, and that have lines through
them that make certain angles with respect to each other.

To assist us with the pattern matching, it is helpful to think of the patterns as
being formed of points where Ammann bars intersect. All the sets of Ammann bars
have an orientation in the plane, so we can define the intersection points as being
between Ammann bars that have certain orientations relative to each other. This
will cut down on false matches because the additional information provided by the
Ammann bar orientation prevents us from matching patterns that have the right
shape but involve the wrong Ammann bars.

To create a pattern, we look at all the Ammann bars that are involved in the
feature we want to match. In the case of Penrose tiles we look at all the Ammann
bars that are involved with the tiles we are examining. We can then find the smallest
unique set of intersections of the Ammann bars and use this as our pattern.

4.2 Matching Patterns

Once we have constructed a library of patterns that we want to find, we must devise
an algorithm to actually locate the patterns for us. Because the Ammann bars can
be rotated through angles that are multiples of 72◦, the search algorithm must be
able to find patterns that are rotated and translated, but not scaled. Because of the
self-similarity of Penrose tilings, patterns may exist that have the right proportions
but incorrect scale.

When we have found a match, we must also be able to accurately describe where
it occurs. We have to be able to say where the pattern was found, what rotation it
might have, as well as which Ammann bars are involved in the match. The reason for
the last condition is that we may need to force other bars that are nearby, depending
on what pattern we have matched. Knowing which bars are involved in the match
will help in finding the nearby bars that may also be affected.

4.3 Forcing New Information

Some patterns may help us to add more information to a Penrose tiling. Suppose
that every pattern we match has some amount of unique information associated with
it that no other pattern possesses. Also suppose that not all of this information is
required to uniquely identify the pattern, and that the pattern can exist without all



CHAPTER 4. FORCING RULES 48

of the information needing to be present. When this is the case, we can match on
the smallest amount of information possible, and then fill in the missing information
that we know must exist. Doing so augments the tiling and allows us to possibly find
more forced information without needing more initial information.

As an abstract example, consider an animal-classification scheme. Suppose that
we know an animal is a human if we know it has any two of the following properties:
it uses language, it is a mammal, it stands on two feet, it uses tools. If you are told
that a certain animal stands on two feet and uses tools, then you can uniquely classify
it as human, because you have enough information to do so. Now, if you are asked
whether the animal can talk, you can incorporate the other information associated
with humans and answer “yes.” This same idea carries over to our Ammann bars.
Once we know enough to uniquely identify a pattern, we can rightfully add any missing
information to the sequences of Ammann bars, possibly forcing new bars that will
help us later.

More concretely, there are two patterns that we currently employ to force more
information in a Penrose tiling. There may be other patterns that have not yet been
discovered which force even more information. We hope that this research will allow
more of these rules to be discovered.

4.3.1 Darts

A Dart always forces the Ace configuration, as mentioned earlier. There are five Am-
mann bars that are forced in an Ace, but Minnick has shown that of these five, one of
two special bars may remain unforced. The two special bars are shown in Figure 4.3.1.
If one (but not both) of these bars is unforced, the entire Dart configuration is still
forced. When one of these bars is unforced, and we find the Dart configuration, we
can force the missing bar and add information to the tiling.

4.3.2 Minnick’s Double Kite

Minnick discovered what we call the “Double Kite” forcing pattern. When two Kites
are aligned so that their short edges coincide, a single Ammann bar runs directly
through the two Kites. However, another Ammann bar is forced at a distance equiva-
lent to a short interval away, as in Figure 4.3.2. This line is forced because all possible
legal tile configurations that contain the Double Kite shape all have this Ammann
bar forced in this location. By exhaustive proof, Minnick showed that the Double
Kite formation always forces this Ammann bar. We include it as one of the patterns
we search for.



CHAPTER 4. FORCING RULES 49

Figure 4.5: The two bars (shown in bold) from the Dart (Ace) that are not required
to be forced. Only one of these bars must be forced for the Dart to be forced.

Figure 4.6: The “Double Kite” formation. Although the two Kites do not directly
force any Ammann bars, they force an Ammann bar at a distance S from the Ammann
bar that passes through both Kites.



CHAPTER 4. FORCING RULES 50

Figure 4.7: A Kite tile, with the “Kite Triangle” Ammann bars in bold.

4.4 Drawing Tiles

Some of the patterns that we search for will simply be used to identify individual
Penrose tiles. When we have found a certain tile, we can use the position and rotation
information to draw a correctly oriented Penrose tile on top of the Ammann bars.
This step will allow us to display the forced Penrose tiles visually after we have
computed an empire.

4.4.1 Kites

The Kite tile contains three Ammann bars which form a small triangle in the center
near the base of the Kite, as in Figure 4.4.1. Ammann bars that form a triangle
with these angles and side lengths are not found in any other shape but the Kite.
Thus, when we find this exact configuration of Ammann bars, we know that a Kite
is present.

The Kite does not force any additional information by itself, so finding this pattern
does not allow us to add any new information to the tiling. When we render the final
empire as a set of Penrose tiles, however, we must look for this pattern so that we
know where to draw Kites as part of the Penrose tiling representation.

4.4.2 Darts

The Dart configuration, mentioned previously and shown in Figure 4.3.1, is also
matched for drawing purposes. When an empire is finally rendered as Penrose tiles,
this pattern must again be matched so that the Dart tile can be drawn in the tiling.



CHAPTER 4. FORCING RULES 51

4.5 Review

Patterns of Ammann bars allow us to find regions in the plane that interest us. These
areas of interest may be areas where tiles can be drawn or new Ammann bars can be
forced. We create patterns so that they are unique, which prevents us from drawing
or forcing incorrectly. When we match a pattern, we fill in any missing information
(thereby forcing new Ammann bars), apply any forcing rules (such as the Double
Kite forcing rule), and draw any tiles. Doing so allows us to find as much forced
information in the tiling as possible.



Chapter 5

Implementation

We have now discussed all of the s necessary to find partial1 empires of Penrose tiles.
We have outlined the relationship between Penrose tiles and Ammann bars, which
will allow us to convert from one representation to the other. We have explained
algorithms that will allow us to deal with arbitrary forcings in sequences of Ammann
bars, which will allow us to get long-range forcing information in a Penrose tiling.
We have explained how we plan to find patterns that interest us in the sequences of
Ammann bars, and how we exploit these patterns to obtain information about the
Penrose tiling, as well as where we should render Penrose tiles.

5.1 Overview

Now we must actually implement these algorithms. This chapter will discuss the
methods used to find the partial empires of Penrose tiles. We have chosen to leave
some details out, as they would only cloud the understanding of the software. Such
details will be noted in the text, but they will not be addressed in the algorithms
presented here.

Our software assumes that we are beginning with five sequences of Ammann bars,
arranged in a plane so that they define a Penrose tiling. We could have started with
tiles, and then had the software perform the additional step of translating the initial
tiles to Ammann bars. Giving exact coordinates of Penrose tiles is no easier than
simply defining the initial Ammann bars, however, so our software simply begins
with the Ammann bars.

1We emphasize here that the empires we find are as complete as possible, but are not necessarily
the entire empires of any set of Penrose tiles.

52



CHAPTER 5. IMPLEMENTATION 53

5.2 Musical Sequences and Ammann Bars

As described in Chapter 3, we have implemented Minnick’s geometric algorithm for
musical sequences. We have augmented the Ammann bar representation so that a
sequence of Ammann bars can be placed precisely in a two-dimensional space. Our
Ammann bars have a “center,” which is the zeroth bar of the sequence. All other
bars are numbered relative to this bar.

Our Ammann bars also have a rotation, defining their orientation in the plane.
Because five sequences of Ammann bars interact to form a Penrose tiling, we must be
able to represent sequences of Ammann bars that have been rotated through multiples
of 72◦.

Finally, our Ammann bars have a center point. This is a point that the zeroth
bar passes through. This allows us to precisely align the Ammann bars in the plane
so that they interact properly. There is no point in a Penrose tiling where all five
sequences intersect, so we cannot simply have all the sequences of Ammann bars
centered at (0,0) in the plane.

Our final representation looks like Figure 5.2. The axis of the sequence passes
through the center point (x, y), and has an orientation θ, measured in degrees from the
x-axis. The Ammann bars themselves are perpendicular to the axis of the sequence.

As shown in Chapter 3, we have routines to force arbitrary bars at a certain
distance from the origin. We also have routines that will return whether a certain
bar is forced or not.

While they will not be used in our conceptual explanations, our software also
contains routines to convert bar numbers to two-dimensional coordinates that lie
along the axis of a sequence, as well as convert these coordinates back to bar numbers.
This allows for easier comparisons of points in the plane.

5.3 Intersections

Given five sequences of Ammann bars, our first task is to find all of the intersections
of these Ammann bars. Intersections provide us with the easiest way to find relatively
positioned Ammann bars, by outlining the shapes that they make. We only test the
forced Ammann bars when we compute our intersections, because only the forced
bars correspond to forced tiles.

We do not simply store two-dimensional coordinates. Rather, we store the inter-
section of two bars from two sequences. For example, if the fifth bar from the sequence
with rotation 72◦ intersects the second bar from the sequence with rotation 216◦, then



CHAPTER 5. IMPLEMENTATION 54

� � � � � �
� � �

Figure 5.1: A sample Ammann bar sequence, with center (x, y) and rotation θ.



CHAPTER 5. IMPLEMENTATION 55

� � � � � � � �

Figure 5.2: A sample field of intersection points. The Ammann bars are shown in
light grey. A sample pattern like one we might search for is shown at bottom.

the intersection is said to occur at ((72◦, 5), (216◦, 2)). By storing the rotation and
bar number, we make our calculations exact by avoiding round-off errors associated
with real coordinates. Additionally, they make our pattern matching easier later on
by allowing us to analyze the relative positions of the Ammann bars.

Figure 5.3 shows the intersection points for a small section of the plane. A pattern
like one that we might search for is shown below.

To find these intersection points, we must test each sequence of Ammann bars
for intersection with the others. Because the Ammann bars are arbitrarily long, and
because no sequence of Ammann bars is parallel with any other sequence, every Am-
mann bar from every sequence intersects every Ammann bar in every other sequence.
Therefore, it is not unreasonable to test every bar for intersection. In a real system
we would limit the intersection test to only return intersections in some finite area
of the plane, so we must add in a small check to confirm that the intersections are
computed only for bars that fall within a certain range. This step is not fleshed out
in the pseudo-code for the intersection routines is shown in Figure 5.3, but is easy to



CHAPTER 5. IMPLEMENTATION 56

Start of Algorithm FindIntersections

Input:

Ammann bars, an array of five sequences of Ammann bars
Ranges, Bars in each musical sequence that should be checked for intersection

Output:

Returns a set of bar intersections, in the form of
((Aorientation, Abarnumber), (Borientation, Bbarnumber))

Begin:

Loop for every sequence, SequenceA, in the array of Ammann bars
Loop for every remaining sequence, SequenceB, in the array of Ammann bars

For Each bar in SequenceA and each bar in SequenceB:
(Perform Range-checking on the bar number)

If the bars intersect Then Store the intersection value in the set to be re-
turned

Return the set of Intersections

End of FindIntersections

Figure 5.3: A pseudo-code implementation of the Intersection-finding algorithm

implement.

5.4 Pattern Matching

After the intersection routines have been run, we have a set of intersection points
that we can begin searching through for patterns. Because searching for certain
configurations of points is similar to searching for constellations in the night sky, we
say that we search for a constellation in a sky of points.

A constellation is the template pattern that we are searching for. It is defined
in its own plane in a way that is easy for the researcher to describe. A sample
constellation is shown in Figure 5.4. It is a small triangle, made from three Ammann
bars intersecting like the ones inside a Kite.

Because our constellations may appear at different positions and rotations through-
out our sky, we must have a mechanism that can find the constellation despite these
disturbances. When we have found a constellation in the sky, we have created a
mapping. A mapping details the rotation and translation necessary to map the pro-
totypical constellation to an actual pattern match in the sky. The mapping is needed



CHAPTER 5. IMPLEMENTATION 57

�

�

�

� � � � � � 	 � 
 � � �  � �

� � � � � � 	 � 
 � � �  � �

� � � � � � � 	 � 
 � � �  � �

� � � � � � � 	 � 
 � � �  � �

� � � � � 	 � 
 � � �  � �� � � � � 	 � 
 � � �  � �

� � � � � � � �

� � � � � � � �

� � � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

Figure 5.4: A sample constellation. Note that the constellation is defined at an angle
and position that is easy to compute.



CHAPTER 5. IMPLEMENTATION 58

when we take action on the pattern, as we need to know how to find it and its
surroundings to perform actions such as forcing new bars and rendering tiles.

The simplest approach to finding constellations in the sky is to simply iterate
over all of the points in the sky, and check to see if it is part of a valid constellation.
Obviously, this method would be too time-consuming in practice. Therefore, we must
adopt a slightly more intelligent algorithm.

Our algorithm begins by sorting all of the points in the sky into a dictionary
ordering. We chose to sort the points leftmost to rightmost, and for coordinates with
the same x value, bottommost to topmost. This allows us to iterate over the points
in the order shown in Figure 5.4.

We now consult our constellation. We use a pair of points that are a known
distance δ apart from each other. In practice, it is best to choose a pair of points
with a distance between them that does not appear except in this constellation. This
way, less time will be spent later on when we verify matches. Additionally, we should
choose δ to be as small as possible, so that our scan line optimizations (which will be
discussed later) are more effective. It should be noted, however, that the algorithm
will still function correctly even if a poor choice of δ is made. The constraints on
δ are made only so that the algorithm will run faster. Figure 5.4 shows our sample
constellation with this pair of points marked.

To reduce the practical number of points that must be compared in this algorithm,
we use a scan line to define the set of points that are currently being considered as
part of a match. The scan line has a width of δ, and only the points which fall within
this scan line are considered eligible for matching. Because the size of δ determines
how many points are under consideration, smaller values of δ are desirable because
they reduce this number of points.

The actual pattern-searching algorithm works as follows: After ordering the points,
we iterate over them one at a time. The point currently under consideration is com-
pared against all the points in our scan line. If any of the points are exactly distance
δ away, the two points are stored as a pair for further consideration. Once all the
points in the scan line have been checked, the scan line advances to include the cur-
rent point. Any points that were farther than δ away on the x-axis have now left the
scan line, and are no longer under consideration. However, since we are only looking
for points that are exactly δ away, we know that those farther than δ away need
not be considered. This is the purpose of the scan line: to limit the points under
consideration to those that could possibly be close enough.

Once we have iterated over all the points in the sky, we are left with a set of
point-pairs which potentially belong to the pattern we are searching for, because the
point-pairs correctly match part of the constellation. We now consider each of these



CHAPTER 5. IMPLEMENTATION 59

� � � � �

� � �

Figure 5.5: A sample ordering of points in a plane, from left to right, top to bottom.
Iterating over the points in order results in the path shown.



CHAPTER 5. IMPLEMENTATION 60

� � � � � � � � � � � 	 
 � �

� � � � � � � � � � � 	 
 � � �   � � � � � � � � � 	 
 � �

�   � � � � � � � � � 	 
 � �

� � � � � � � � � � 	 
 � �� � � � � � � � � � 	 
 � �
� �   � � � �

� �   � � � �

� � � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � � � � � � � � � � � �
� � �   � � � � � � � � � � � � � � � � � � � � � � �   � � � � �� �

Figure 5.6: A constellation with the unique point-pair marked. The points are sepa-
rated by a distance δ.



CHAPTER 5. IMPLEMENTATION 61

�
�

� � � � � � � �

Figure 5.7: An example of the scan line used in the pattern-finding algorithm.



CHAPTER 5. IMPLEMENTATION 62

point-pairs in turn, and determine if they actually form the pattern we are looking
for. If they do, then a mapping has been constructed, and we store this for later use.
If they do not, then the point-pair is discarded as incorrect.

We repeat this process for all the different kinds of constellations that we want
to search for. We associate the mappings with the constellations they belong to,
resulting in a pattern match. These pattern matches will be used to force new bars
and render tiles.

5.5 Feature Forcing

Given a collection of pattern matches, we must force any new Ammann bars that we
know must be forced by the presence of other bars. A constellation can store both the
bars that are required to be matched, as well as those that can optionally be matched
(the Dart is an example of this). If this information is included, then forcing new
information is relatively straightforward. To force new information, we first map our
constellation to the pattern in the sky. The mapping we use was found earlier, when
we searched for patterns. To force new information, we consult the constellation, and
see where forcings should occur. We map those forcings out to a real location in the
plane, and then apply them.

As an example, consider Figure 5.5. The constellation shows us where the inter-
section of two specific Ammann bars should occur. Naturally, we cannot simply force
bars using the addresses provided in the constellation; they describe a different loca-
tion and rotation than the one we wish to force. Therefore, we apply the mapping,
which changes the addresses of the intersections involved. With these new addresses,
we can apply the forcings correctly.

A more general algorithm to use when forcing new information is given in Fig-
ure 5.9. The algorithm assumes that we have some constellation, with the required
intersections labeled separately from the optional intersections. Since we have already
found the required intersection pattern, we may use those points as a base reference
for the other intersections. By knowing the placement of one Ammann bar in our
constellation, we can find all other bars relative to it, and force them if necessary.

In more detail, here is how the algorithm works: We must know the position of at
least one intersection of Ammann bars, otherwise we could not have made a match.
Knowing the position of this intersection, we can construct a relationship between
the Ammann bars of the constellation and the Ammann bars of the actual pattern in
the plane. For example, let’s say that we have some known point A, which has the
coordinates ((72◦, 1), (216◦, 1)). However, in our real pattern, this intersection occurs



CHAPTER 5. IMPLEMENTATION 63

Optional Bars

Figure 5.8: An example of how forcing information contained in the constellation is
applied to force new information in a tiling.

at ((144◦, 12), (288◦, 14)). The bar numbers are not as important as the fact that the
sequences have changed. Our whole template has been rotated 72◦, and so all the
other intersection addresses must be altered to compensate for this.

To force an optional intersection, we first determine what sequence it belongs to
by adding in the rotation found in the s just described. We now know which sequences
the intersection lies on in our pattern. Now, we map the constellation point out into
the plane, and then determine the Ammann bars that it must lie on. Since we know
the sequences, and we know the point that the forced Ammann bars must intersect
at, this becomes a simple matter of converting the coordinates to distances along the
musical sequences, and then converting the distances to bar numbers. Having done
this, we can force the bar numbers, and the operation is complete. Repeating this
procedure for all the optional bars will ensure that any information that should be
forced is forced.

5.6 Feature Drawing

After we have forced all of the new information in a tiling, the only step that remains
is to convert the Ammann bars back into Penrose tiles for final rendering. This is
relatively simple, and works in a similar fashion to the forcing algorithms.

To draw a tile in the correct area of the plane, we need only to have a drawing
that matches our constellation. Grünbaum and Shephard [GS87] explain the rela-



CHAPTER 5. IMPLEMENTATION 64

Start of Algorithm ForceNew

Input:

Ammann bars, an array of five sequences of Ammann bars
Constellation, the set of intersection points that define the pattern we are looking for.
Constellation should contain required intersections of Ammann bars, which must have al-
ready been matched, and optional intersections, which are those that will be forced by this
algorithm
Mapping, the transformation that maps the template constellation to a real position in the
plane

Output:

Alters the Ammann bars so that any bars that are forced by the presence of the constellation
are now forced

Begin:

Map a known intersection point from the constellation to a real point in the plane and Store
it in BaseIntersection

Compute the difference between the known point’s sequence rotation and the sequence
rotation of BaseIntersection, and Store this value in BaseRotation

For Each intersection point that is optional :

Calculate the sequences that the point must lie on, using BaseRotation as a com-
pensation value
Map the point to a real position in the plane
For Each sequence that this intersection point involves

Calculate the distance along the sequence where the point lies
Calculate the bar number that this distance corresponds to
Force the bar number for this sequence

End of ForceNew

Figure 5.9: A pseudo-code implementation of a function to force new Ammann bars
in a Penrose tile.



CHAPTER 5. IMPLEMENTATION 65

tionship between the Ammann markings and the Penrose tiles, and by applying this
information we can construct a drawing that overlays our constellation perfectly.

Once we have this information, drawing the tile is elementary. Any pattern match
in the plane has a mapping which describes how to translate and rotate the constel-
lation to match the pattern in the plane. Because our drawing is simply an overlay
on this constellation, drawing the tile simply requires translating and rotating it with
the same mapping. Once we have done so, the drawing is in the correct place.

5.7 Pattern Matching Algorithm In Detail

We have now described the basic algorithm for finding forced Penrose tiles in the
plane. We will now return to the portion of the algorithm which deals with the
actual matching of patterns in the plane and treat it in more detail.

5.7.1 Scan Line Algorithm

The scan line is used to limit the points that are under consideration during our
initial search for patterns. Earlier, we only mentioned that the scan line “moved”
across the sky of points so that we were only considering points that were close to
the current point that we were looking at. We will now return to this concept and
further develop our algorithm.

When we begin our search through the sky of points, we must already have a
distance δ, derived from some pair of points in the constellation. This distance should
be one that does not occur frequently outside of the constellation. The scan line is as
wide as this value δ to prevent consideration of points that are obviously farther than
δ away. If a point has an x value that differs from the current point by more than δ,
then it is guaranteed to be too far away. Because of this, δ should also be as small
as possible so that we can keep the number of points under consideration as small as
possible. Note that both of these constraints on δ are not mandatory; they are used
to make the algorithm run faster, but are not required for it to function correctly.

To implement the scan line, we use a queue. As points are added to the scan
line, they are pushed onto the tail of our queue. As points leave the scan line they
are popped off of the head of the queue. If our scan line moves from left to right,
the leftmost points (those that have been in the scan line longest) are those that are
closer to the head of the queue.

The queue algorithm is shown in Figure 5.10, and works as follows: the points at
the head of the queue are compared against the current point. If the point at the



CHAPTER 5. IMPLEMENTATION 66

head of the queue has an x value that differs by more than δ from the current point’s
x value, it is popped off the queue. This is repeated until the point at the head of the
queue has an x value which is within δ to the current point. This is how we “move”
the scan line to the right. The points that are popped off the queue correspond to
those that leave the scan line as it moves to the right.

Our queue now only contains the points that might be the correct distance from
our current point. We iterate over these points, calculating the distance between them
and the current point. If we compute a distance of δ, then the pair of points (that
is, the current point and the one in the queue that is δ away), is saved for further
consideration.

When all of the comparisons have been made, the current point is added to the
tail of the queue, the next point in the sky is made to be the current point, and the
algorithm begins again. When we have iterated over all the points in our sky, we are
left with pair of points that are the correct distance δ apart.

5.7.2 Mapping Verification

Once the scan line algorithm has been run, we have pairs of points that are some
distance δ apart. These point pairs represent potential matches, and must be checked
further. The reason they are potential matches is that they are the correct distance
apart to be one pair in our constellation. The distance δ was chosen from the distances
in our constellation, and so these point pairs represent points that would fit in our
constellation.

We must now verify that the other points in the constellation also exist in the
sky, near the points that the scan line algorithm found. To do so, let us assume that
we have a point pair, found by the scan line algorithm, consisting of points {J,K}.
We shall also assume that these points are the same distance δ apart as the points
{M,N} from our constellation.

The first thing to do is to construct a mapping. A mapping is a formula that
will translate and rotate a constellation point to some place in the plane where the
constellation is supposed to occur. Mappings are used by the later algorithms, as we
saw in the forcing and drawing algorithms discussed earlier. We can build a mapping
from only two points in the following manner.

Determine a translation that will move point M to point J. This is the translation
part of the mapping, expressed as (∆x,∆y). Computing these values is as simple as

∆x = Jx −Mx ∆y = Jy −My



CHAPTER 5. IMPLEMENTATION 67

Start of Algorithm ScanLine

Input:

Sky, a set of Ammann bar intersection points
δ, a known distance in the constellation. We are searching for points that are exactly this
distance apart
ScanQueue, an initially empty queue that will hold points. Points are added to the tail and
removed from the head

Output:

Returns a set of pairs of points. These pairs are points that are exactly δ apart from each
other

Begin:

For Each intersection point J in the sky:

While the x value of the intersection point at the head of the ScanQueue differs from
the x value of J by more than δ:

Remove the point at the head of the ScanQueue

For Each intersection point K in the ScanQueue:

If the distance from J to K is δ
Then Store the point pair {J,K} to be returned
Else (nothing)

Add J to the tail of ScanQueue

End of ScanLine

Figure 5.10: A pseudo-code implementation of the scan line queue from the pattern
matching algorithm.



CHAPTER 5. IMPLEMENTATION 68

We have now mapped the first points from the pairs. Using the second points,
we can get the rotation required for the mapping. Conceptually, the way this is done
is to first translate the points so that the first two (M and J) coincide, and then
simply determine the angle θ which we must rotate N through (with respect to M)
to coincide with K.

Mathematically, we can represent this using the arctan function. If we translate
the points by ∆x and ∆y, then they both have the same center of rotation at (0, 0).
If we compute the rotations with respect to the origin, as follows:

Krot = arctan
Kx

Ky

Nrot = arctan
Nx

Ny

If we subtract Krot from Nrot, we are left with the angular difference of the two.
This is the rotational component θ of the mapping. Note that this angular computa-
tion does not confirm that the points K and N actually coincide; it merely finds the
angle between them. A final check should be made to ensure that the points actually
line up.

We now have a complete mapping, with translation components (∆x,∆y) and
rotational component θ. With it, we can map any point in our constellation to a real
point in the sky. The two points in our constellation that were separated by a distance
δ trivially map to the correct points in the sky. But the rest of the constellation needs
to be verified. To do so, we simply map every point in the constellation with the
mapping we just constructed. The resulting point is a point that must exist for the
constellation to be found at that point in the sky. We test for that point in our set
of sky points. If it exists, then we continue checking the constellation. If it doesn’t
exist, then we can stop. When we have finished, if all the mapped constellation points
exist in the sky then the mapping is valid and the pattern has been matched.

This is how we verify the point pairs that we obtain from our scan line algorithm.
The algorithm for this pattern verification is shown in Figure 5.11. One final note: as
shown above, the mapping is constructed by arbitrarily corresponding point J with
M and point K with N. Obviously, there is no reason why the points couldn’t be
associated the other way (J with N and K with M), because the pattern may be
flipped over. In order to deal with this, we should always test two mappings per point
pair, to ensure that we’ve checked both possibilities.



CHAPTER 5. IMPLEMENTATION 69

Start of Algorithm PatternVerify

Input:

Sky, a set of Ammann bar intersection points
Constellation, the constellation that defines the pattern we’re looking for
PointPairs, a set of pairs of points that correspond to a certain pair of points in our con-
stellation, {M,N}. PointPairs should be generated by the ScanLine algorithm

Output:

Returns a set of Mappings, which map the Constellation to all the locations in the plane
where it occurs.

Begin:

For Each pair of points {J,K} in the set of PointPairs:

Compute a Mapping from points {J,K} to {M,N}
For Each point P in the Constellation (excepting M and N):

Map P using the Mapping to point P’
Search for point P’ in the Sky
If the point is found
Then Continue
Else Exit For Loop

If all the points in the Constellation mapped successfully
Then add the mapping to the set to be returned
Compute a reversed Mapping from points {J,K} to {N,M} and repeat the Con-
stellation point verification For Loop above using this Mapping.

End of PatternVerify

Figure 5.11: A pseudo-code implementation of the pattern verification algorithm.



CHAPTER 5. IMPLEMENTATION 70

5.8 Complexity

As noted in Chapter 3, we would like the algorithms that we use to be as efficient
as possible. The algorithms above should allow us to find the empires of arbitrary
patches of tiles. We are interested in knowing how long the algorithms will take, so
that we can predict the performance and search for improvements. We will consider
the various pieces of our empire-finding algorithms below in an attempt to determine
the overall complexity.

5.8.1 Ammann Bars

In order to get the intersection points that we will search through for patterns, we
must first find all the intersections. To do this, every Ammann bar must be compared
against every Ammann bar from the other sequences exactly once. If there are m
Ammann bars per sequence, then we have a factorial number of comparisons. The
first sequence must have its m bars checked against the other 4 sequences’ m bars.
The second must be checked against 3 other sequences, and so on. With 5 sequences
total, the number of comparisons can be represented by

4m2 + 3m2 + 2m2 +m2

Dropping the coefficient, we have a complexity ofO(m2), dependent on the number
of Ammann bars per sequence, m. The result of these comparisons, however, is some
number of points n. Because each intersection produces one point, and because every
bar interacts with every other, each test results in one point. Thus, the overall
complexity of the algorithm, in terms of the number of points in the sky, is O(n2).

For the actual scanning of points, several factors work against us. Every point
in the sky is potentially part of a pattern. We must therefore inspect every point at
least once, which requires n inspections.

When we inspect a point to see if it is part of a pattern, we must see if there is
some other point in the sky that is a distance δ away. If we did not use the scan
line algorithm, every other point in the sky would have to be checked to see if it was
the correct distance away. This would also require n comparisons, and so the total
complexity of just finding candidate pairs alone would be O(n2).

After we have found the candidate pairs, they must be further tested to see if
they form a true pattern or not. As we saw above, doing so requires constructing a
mapping, and then mapping all the points in a constellation and verifying that they
appear in the sky. Constructing a mapping is a constant-time algorithm (a fixed



CHAPTER 5. IMPLEMENTATION 71

number of simple operations), and so it does not affect our run time. Also, if we
assume that the number of points in the constellation is relatively small compared to
n, then this too has no impact on our order of magnitude. However, each constellation
point that is mapped must be searched for in the sky of points. Assuming we store
the points in a structure that is efficient to search, such as a binary search tree, our
search time is O(n log n). This will dominate the verification algorithm’s run time,
and so the verification step alone is O(n log n).

This verification step must be performed for all pairs of points that are the correct
distance δ away. In the worst case, all n points would match this distance δ, and so
the verification step would be performed n times. This is why choosing a “rare”
value for δ is extremely important; it k the number of verifications to a minimum if
we choose a value for δ that does not occur frequently. Assuming that the number of
candidate pairs is much smaller than n, the verification step does not adversely affect
our run time.

Adding up the s of the Intersection algorithm, the pair-finding algorithm, and the
verification algorithm, we would find that the run time of the whole pattern matching
algorithm to be

O(n) +O(n2) +O(n log n) ≈ O(n2)

Clearly, the O(n2) term will dominate the complexity. What this means is that
we should try and make the pair finding algorithm as efficient as possible. We do this
through the use of the scan line described above. The scan line heavily limits the
number of point comparisons that we perform.

For computational purposes, assume that our n points are evenly distributed
throughout the sky. This means that we can draw a grid such that one and only one
point falls within each square of the grid. A simple calculation will show that the
dimensions of our sky can be expressed as

√
n units wide and

√
n units tall, because

multiplying the two together yields n, with one point per square.
Assume that we make δ small enough so that it is on the order of

√
n. This is not

unreasonable; δ is roughly the size of a single Penrose tile, so any empire involving a
large number of tiles will quickly grow so that δ is relatively small. If δ is the same
size as

√
n, and if our scan line is as wide as δ, then we are considering

√
n points at

any given time, because that is how many points will be found inside the scan line.
Thus, rather than considering all n points in the sky to find a pair, we consider only√
n. This concept is demonstrated in Figure 5.8.1.

The complexity of the algorithm is reduced from O(n2) to O(n
√
n). While this is

not as good as O(n log n), it does represent a tangible difference in the running time
of the algorithm.



CHAPTER 5. IMPLEMENTATION 72

Figure 5.12: A graphical demonstration of how the scan line reduces the complexity
of the pattern matching algorithm. The total number of points is n, but only

√
n

points are under consideration at any time.



CHAPTER 5. IMPLEMENTATION 73

5.8.2 Further Optimizations

The scan line algorithm allows us to reduce the run time of our pattern matching
algorithm. In addition to this, we have implemented a partitioning scheme that
improves the run time of our pattern matching algorithm even more.

Conceptually, the partitioning scheme works as follows: given a square section
of the plane to search for intersections, the partitioning scheme divides it into four
smaller squares. The partitioning scheme is recursively called on each of these smaller
squares, which will continue to be divided up until the squares have reached some
predetermined size that is considered small enough to work on.

In practice, the algorithm is very similar. The first consideration is the loss of
patterns on the borders of the squares. If a pattern was split by the boundary between
two squares, then it would fail to be recognized by either of the two independent
pattern matches in both of the squares. To prevent this from happening, we make
sure that the squares overlap slightly, such that the overlap is the same size as the
largest pattern we will ever look for. This way, any pattern is guaranteed to fall
completely inside one of the two squares (or both).

The second consideration is determining when we have divided the squares up
“enough.” Dividing up squares introduces some memory and computational over-
head, and we don’t want to make our problems worse. Therefore, we should stop
partitioning before it becomes more inefficient to partition than to just compute the
intersections for the whole square.

Our software takes both of these factors into account. It does not partition unless
the area to be considered is sufficiently large, and when it partitions it makes sure
that all the squares overlap by at least as much as the largest pattern that is being
searched for. In doing so, the run time of the software noticeably improved. Even
more importantly, memory consumption dramatically decreased, because the software
did not have to store large numbers of intersections while it searched for patterns.
By converting the partitioning scheme to an iterated system, we virtually eliminated
the problem of running out of memory, because we only needed enough memory
to consider the smallest partition size plus the space to store the other partition
information.

With these optimizations, our software is capable of rendering large portions of
Penrose Empires in a reasonable amount of time. With this new tool, the search for
more forcing rules in Penrose tilings can begin.



Chapter 6

Results

Having implemented the algorithms from the previous chapter in software, we can
now produce empires of any arbitrary set of initial tiles. Note that the algorithms we
use are not necessarily complete; there may still exist forcing rules unknown to us.
We therefore stress that the figures shown in this chapter are partial empires of tiles.
There are more tiles shown here than in other previous works, but we do not claim
to have complete empires shown here.

6.1 Verified Empires

The configurations of tiles that have been studied the most are those of the seven
vertex configurations. These seven arrangements are the only ways that Penrose tiles
can legally arrange themselves around a single point. For this reason it is natural to
begin our exploration of empires here.

Each configuration must be defined in terms of the Ammann bars that force the tile
configuration. This step is not trivial, and so we have included diagrams of the initial
bar forcings for each vertex configuration. The notation used for distances comes
from Minnick, who cataloged the distances between the vertex points of Penrose tiles
and the Ammann bars in her research. Her table of these distances is included for
reference in Figure 6.1.7. Additionally, Figure 6.1.7 and Figure 6.1.7 show the Dart
and Kite tiles with these distances marked.

In these initial Ammann bar configurations, we show only the initial forced tiles
and the Ammann bars that cause them to be forced. There are often locally forced
tiles as well (caused by the presence of a Dart). In the interests of clear diagrams,
however, these local tiles have been omitted, as have the Ammann bars that force

74



CHAPTER 6. RESULTS 75

them.
In the center of each diagram is a point where all the axes (shown using dashed

lines) of the musical sequences intersect. This corresponds to the point (0, 0) in the
plane. Each musical sequence has an angle that is an integer multiple of 72◦, and
axes are labeled in terms of their angles of rotation.

The Ammann bars are defined as being forced a certain distance away from the
center point (0, 0). The tables below the figures show the distance that the zeroth
and first (if necessary) bars are from the center point. The distances used are those
defined in Figure 6.1.7. If a distance is negative, it simply means that the distance
should be applied at 180◦ to the axis of the sequence. In other words, if we want to
travel a distance −x along a sequence with angle 72◦, we simply travel a distance x
at an angle of 252◦.

For each vertex configuration we have shown a diagram of the Ammann bars that
force the tiles, as well as a short table of initial bar distances from the zero point. If
two bars are forced in a single sequence, the interval between those bars is also listed.

6.1.1 The Ace

The Ammann bars required to force the Ace are shown Figures 6.4 and 6.5. The final
empire of the Ace is shown in Figure 6.1.7. The Ace configuration alone does not
force any other Penrose tiles. Looking at the Ammann bars, the reason why becomes
obvious. Only one Ammann bar is forced for each musical sequence. Because one bar
does not force any others, no Ammann bars besides the initial ones are forced, which
in turn causes no tiles to be forced. This figure is included to demonstrate that the
software correctly finds the empire of the Ace. The scale is large to show that no
extra tiles have been introduced by the software.

6.1.2 The Deuce

The Ammann bars required to force the Deuce are shown Figures 6.7 and 6.8. The
final empire of the Deuce is shown in Figure 6.1.7. Like the Ace configuration, the
Deuce only forces one bar per musical sequence. Unlike the Ace, however, the Deuce
forces other non-local tiles. This happens because our bar forcing rules allow us to
force new bars from our initial set.

A Dart has optional bars that do not need to be matched. The Deuce configuration
lacks one optional bar from both of its Darts; we can fill in these bars because we
know they must exist. After we have done so, there are now two bars in two of the
musical sequences. This causes more Ammann bars to be forced, and thus there are



CHAPTER 6. RESULTS 76

non-local tiles forced as well. The Deuce therefore serves as an excellent example of
how optional bar forcing can help us find more forced information.

Previous research by Grünbaum and Shephard [GS87] has shown the empire of
the Deuce to contain a set of Kites stretching perpendicular to the axis that separates
the two Darts (in Figure 6.7, this is the 144◦ axis). Taking into account the complete
forcing rules, however, yields a much larger empire, which can be seen by the numerous
diagonal alignments of Kites, rather than just a single diagonal passing through the
center of the figure. These “new” tiles were first found by Minnick [Min98], and
Figure 6.1.7 shows a larger set of forced tiles found using Minnick’s method.

6.1.3 The Sun

The Ammann bars required to force the Sun are shown Figures 6.10 and 6.11. The
final empire of the Sun is shown in Figure 6.1.7. Just like the Ace, the Sun does not
force more than one bar per musical sequence. Therefore, the Sun does not force any
other tiles. Like the Ace, we include a figure of the Sun to demonstrate the software’s
correctness.

6.1.4 The Star

The Ammann bars required to force the Star are shown Figures 6.13 and 6.14. The
final empire of the Star is shown in Figure 6.1.7. The Star forces numerous non-
local tiles, because it forces two Ammann bars per musical sequence. The Star also
demonstrates the five-fold symmetry present in Penrose tilings. Patterns and self-
similarities begin to emerge at the scale shown in Figure 6.1.7.

6.1.5 The Jack

The Ammann bars required to force the Jack are shown Figures 6.16 and 6.17. The
final empire of the Jack is shown in Figure 6.1.7. Similar to the Deuce, the Jack has
Darts which force more than the initial set of Ammann bars. These extra bars are
responsible for the forcing of all the non-local tiles.

This rendering of the Jack’s empire shows tiles that have never been published be-
fore. The single Kites found throughout the picture are the result of forced Ammann
bars interacting at long distances from the initial patch of tiles.



CHAPTER 6. RESULTS 77

a sin(54◦)(2τ+1
2τ

) 1.059017 v 1
4
(3− tan(36◦)

tan(18◦)
) 0.190983

b .25 .25 x 2τ+1
2τ

1.3090169
c cos(36◦) + .75 1.559017 y 1

2τ
0.309016 9

d a− 1 0.059017 z .25 .25
e τ − b 1.368034 w .75 .75

Figure 6.1: Minnick’s vector distances relating Penrose tile vertices and Ammann
bars. The distances correspond to those marked in Figure 6.1.7 and Figure 6.1.7.

6.1.6 The Queen

The Ammann bars required to force the Queen are shown Figures 6.19 and 6.20. The
final empire of the Queen is shown in Figure 6.1.7. The number of tiles shown in this
figure are larger than those presented by Minnick, though the extra tiles are found
using the same rules.

6.1.7 The King

The Ammann bars required to force the King are shown Figures 6.22 and 6.23. The
final empire of the King is shown in Figure 6.1.7.

This rendering of the King’s empire shows tiles that have never been published
before. In addition to being much larger than the figures published by Minnick,
Figure 6.1.7 shows a few small patches of Kites that Minnick did not include in her
figures.



CHAPTER 6. RESULTS 78

�
�

�

��

� �

� �

� �

��

�
�

� � � �	 



 � �

� � � �

 �
 �

	 

 �

 �

� �
� �

� �

� �
� �

� �

 �
 �

	 

 �

 �

Figure 6.2: Dart tile with Minnick’s distances from Figure 6.1.7 marked.



CHAPTER 6. RESULTS 79

� �

� �

��

� �

�

�

��

� �

��

� �� �

	 
 	 


� � �� � �

 �

� �� �
� � � �

� �� �

� �� �

Figure 6.3: Kite tile with Minnick’s distances from Figure 6.1.7 marked.



CHAPTER 6. RESULTS 80

� � � �� � � �

�� � � �� � � �

�	 
 � �
� �

	 
 � �
� �

� � � � � � � �

� � � � � � � � �� � � �
� �� �

 � � � �
� �� �

! " # $ % & ' " # $ % & '

Figure 6.4: The initial constellation of the Ace configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: a a -(x+y+z) -(x+y+z) a

Figure 6.5: Ammann bar forcing distances for the Ace configuration.



CHAPTER 6. RESULTS 81

Figure 6.6: The empire of the Ace configuration. No non-local tiles are forced by this
configuration.



CHAPTER 6. RESULTS 82

� � � �� � � �

�� � � �� � � �

�	 
 � �
� �

	 
 � �
� �

� � � � � � � �

� � � � � � � � �� � � �
� �� �

 � � � �
� �� �

! " # $ % & ' " # $ % & '

Figure 6.7: The initial constellation of the Deuce configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: a -(x+y+z) -(x+y+z) -(x+y+z) a

Figure 6.8: Ammann bar forcing distances for the Deuce configuration.



CHAPTER 6. RESULTS 83

Figure 6.9: Part of the empire of the Deuce configuration.



CHAPTER 6. RESULTS 84

� � � �� � � �

�� � � �� � � �

�	 
 � � � �

	 
 � � � �

� � � � � � � �

� � � � � � � � �� � � �
� �� �

 � � � �
� � � �

! " # $ % & ' " # $ % & '

Figure 6.10: The initial constellation of the Sun configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: b b b b b

Figure 6.11: Ammann bar forcing distances for the Sun configuration.



CHAPTER 6. RESULTS 85

Figure 6.12: The empire of the Sun configuration. No non-local tiles are forced by
this configurations.



CHAPTER 6. RESULTS 86

�� � � �� � � �

�	 
 � �
� �

� � � � � � � � �

� � � � � � � �  

! " # $ % & ' " # $ % & '

� � � � � � � �
	 
 � �

� �

� � � �� � � �

� � � � � ��  

Figure 6.13: The initial constellation of the Star configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: -(x+y+z) -(x+y+z) -(x+y+z) -(x+y+z) -(x+y+z)
First Bar: a a a a a

Interval: L L L L L

Figure 6.14: Ammann bar forcing distances for the Star configuration.



CHAPTER 6. RESULTS 87

Figure 6.15: Part of the empire of the Star configuration.



CHAPTER 6. RESULTS 88

� � � �� � � �

�� � � �� � � �

�	 
 � �
� �

	 
 � �
� �

� � � � � � � �

� � � � � � � � �� � � �
� �� �

 � � � �
� �� �

! " # $ % & ' " # $ % & '

Figure 6.16: The initial constellation of the Jack configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: e z b b z

Figure 6.17: Ammann bar forcing distances for the Jack configuration.



CHAPTER 6. RESULTS 89

Figure 6.18: Part of the empire of the Jack configuration.



CHAPTER 6. RESULTS 90

� � � �� � � �

�� � � �� � � �

�	 
 � �
� �

	 
 � �
� �

� � � � � � � �

� � � � � � � � �� � � �
� �� �

 � � � �
� �� �

! " # $ % &' ! " # $ % &

Figure 6.19: The initial constellation of the Queen configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: a -w -(x+y+z) -(x+y+z) -w
First Bar: a a a a

Interval: S L L S

Figure 6.20: Ammann bar forcing distances for the Queen configuration.



CHAPTER 6. RESULTS 91

Figure 6.21: Part of the empire of the Queen configuration.



CHAPTER 6. RESULTS 92

� � � �� � � �

�� � � �� � � �

�	 
 � � � �

	 
 � � � �

� � � � � � � �

� � � � � � � � �� � � �
� �� �

 � � � �
� �� �

! " # $ % & ' " # $ % & '

Figure 6.22: The initial constellation of the King configuration.

θ of Sequence: 0◦ 72◦ 144◦ 216◦ 288◦

Zeroth Bar: -w -(x+y+z) -(x+y+z) -(x+y+z) -(x+y+z)
First Bar: a a a a a

Interval: S L L L L

Figure 6.23: Ammann bar forcing distances for the King configuration.



CHAPTER 6. RESULTS 93

Figure 6.24: Part of the empire of the King configuration.



Chapter 7

Ongoing and Future Work

We have now demonstrated the capability of the software that we have designed.
Our hope is that it will allow us to find new forcing rules, similar to those outlined
in Chapter 4. We have already begun some preliminary work on this, and those
efforts are described below. We emphasize that what we have done so far is only the
beginning; much analysis can still be done with respect to finding new rules.

Because our software makes it easy to generate empires of arbitrary patches of
tiles, we can “set up” situations where we expect certain interactions to occur, and
then observe the actual results in the Penrose tiling. Below are some of the ways that
our software may help in the discovery of new forcing rules.

7.1 Interference

Minnick [Min98] noted that while the Ace does not force any non-local tiles, two
Aces with different orientations can force non-local tiles. We decided to generate
the empires of several configurations of Aces to see if there were any interesting
phenomena occurring in the tilings.

We began by taking two Aces oriented at 144◦ from each other and placing them
adjacent to each other, as shown in Figure 7.1. In this configuration, only one non-
local tile is forced: a Kite that fills out the Sun formation created by the four Kites
forced by the two Aces.

We then moved one of the Aces away from the other in a straight line from its
initial position. We positioned this Ace at six other positions in the plane, increasing
the distance of separation each time. The positions were determined by looking at
the Ammann bars forced by the first Ace and calculating where another Ace could

94



CHAPTER 7. ONGOING AND FUTURE WORK 95

be placed so that it was not in violation of the forcing rules.
We expected to see the regions of forced tiles change as the initial tiles were moved

away from each other. We dubbed the process “interference” because it was analogous
to the interference patterns created by two sources of light; as the sources are moved
away from each other, the pattern created by the interference of their light changes.

The results from these interference patterns can be seen in Figures 7.1–7.1. Pre-
vious work by Minnick [Min98] had stated that only Kites would be forced by the
presence of two Aces, but as some of these figures show, much larger structures are
forced by just two Aces. Just as the interference pattern from light sources may grow
stronger or weaker when the sources are moved, the number of tiles forced by the
Aces can be seen to both increase and decrease as the initial Aces are moved. The
configurations with many forced tiles are the result of fewer Ammann bars forced by
the initial Aces overlapping. The more unique Ammann bars forced by the Aces,
the more Ammann bars that will be forced in total, and so more tiles will be forced.
Conversely, the more Ammann bars that the initial Aces have in common, the fewer
Ammann bars and tiles that will be forced.

We have not been able to fully analyze these results. Our suspicion is that certain
Ammann bar spacings force more information than others. In other words, forcing
the first and fifth bar in a musical sequence may force more bars than forcing the first
and tenth bar. This relationship is not obvious, however, and the fact that we must
simultaneously consider five sets of Ammann bars only complicates matters.

Nevertheless, the results suggest that there are still many rules regarding forcings
that have yet to be found. It is our hope that by relieving the researcher of the
burden of computing empires we have made analysis of Penrose tilings easier and
more productive.



CHAPTER 7. ONGOING AND FUTURE WORK 96

Figure 7.1: Two-Ace interference: Separation 1



CHAPTER 7. ONGOING AND FUTURE WORK 97

Figure 7.2: Two-Ace interference: Separation 2



CHAPTER 7. ONGOING AND FUTURE WORK 98

Figure 7.3: Two-Ace interference: Separation 3



CHAPTER 7. ONGOING AND FUTURE WORK 99

Figure 7.4: Two-Ace interference: Separation 4



CHAPTER 7. ONGOING AND FUTURE WORK 100

Figure 7.5: Two-Ace interference: Separation 5



CHAPTER 7. ONGOING AND FUTURE WORK 101

Figure 7.6: Two-Ace interference: Separation 6



CHAPTER 7. ONGOING AND FUTURE WORK 102

Figure 7.7: Two-Ace interference: Separation 7



CHAPTER 7. ONGOING AND FUTURE WORK 103

7.2 Three-Dimensional Work

Another possible area of research would be in the area of three-dimensional Penrose
tilings (Danzer tilings). Penrose tilings in two dimensions are fairly easy to under-
stand, which may help to explain why no one before us had gone to the trouble
to write software to generate empires. The three-dimensional analogues to Penrose
tilings, however, are extremely difficult to visualize and model. Because the software
takes care of the part of the problem that computers are good at (calculations), but
leaves the part that humans are better at (pattern recognition and rule creation), it
could be extremely helpful in the three-dimensional case.

7.3 Iterative Verification

A final possibility for further work would be using the software in combination with
iterative methods for generating Penrose tilings. Socolar [Soc91] developed algorithms
to iteratively grow defect-free tilings. These algorithms exploit only local vertex-
alignment rules, and so cannot take into account the long-range forcings that we have
found. Used in conjunction with our software, however, they could help us find new
forcing rules.

Socolar’s method “grows” a tiling in the following way: An initial patch of tiles
is placed in the plane. Any tiles that are locally forced by this patch are added until
there are no more vertices where the tile choice is forced. At this point, an arbitrary
tile is added to a certain part of the tiling (the exact placement is not important to
this discussion), which creates a new area where forced tiles must be placed. In this
way, the tiling grows in spurts as forced tiles are placed, a surface is reached where
no forced tiles can be placed, and then one tile changes the surface such that more
forcings can occur.

Our software attempts to find all forced tiles using non-local rules. Perhaps our
methods could be combined with Socolar’s to find more forced tiles. Suppose we began
with an initial set of tiles. Our software would find all the Ammann bars forced by
this initial patch. Then, using Socolar’s algorithm, we could begin to place tiles in the
plane, but only if the placed tiles were consistent with the Ammann bars. Socolar’s
method does not have any long-range structure, and so the arbitrary selection of tiles
in his algorithms would cause problems with our empire finding. If we ensure that
the tiles found through Socolar’s method remain consistent with the Ammann bars
that have already been found, then we can “grow” the empire of an initial set of tiles
and know that it is consistent with our original patch. This prevents us from having



CHAPTER 7. ONGOING AND FUTURE WORK 104

to perform the time-consuming pattern matching to find forced tiles, and it may find
tiles that are not found using our software alone.



Chapter 8

Summary and Conclusion

This work is useful because it sets the stage for future research in the area of Penrose
tilings. We have implemented a constant-time algorithm that forces arbitrary bars in
musical sequences. This required refining Minnick’s algorithm so that it was suitable
for use in a computer with finite precision; we had to keep the algorithm’s arbitrarily
precision, but still use only a finite number of resources.

We developed algorithms that would enable us to determine the interactions be-
tween several sets of Ammann bars in the plane. This required devising a coordinate
system that would retain the precision of specific bar numbers. At the same time,
we needed to allow for a conversion to two-dimensional coordinates so that Euclidean
distances could be determined. Without these two-dimensional equivalents, pattern
matching and tile drawing would not be possible.

Using the intersections gathered from the plane, we developed algorithms that
would search through the intersection points, looking for patterns that interested
us. While the algorithms are inherently of O(n2) complexity, we introduced a “scan
line” algorithm which reduced the expected runtime to O(n

√
n). The algorithms are

general, and can be easily modified to search for new patterns.
The patterns were not merely matched; they also provided a method to incorporate

new information into the Penrose tiling. This feature makes it easy to integrate new
rules for forcings in Penrose tilings. When a new rule is discovered, a pattern is
created that matches the initial conditions for the rule, and then the postconditions
for the rule integrate the new information into the tiling.

As part of the testing and validation of these algorithms, we had to generate
the patterns for the basic Penrose tiles and rule forcings. Thus, we created patterns
for the Kite (which forces no new information), the Dart (which forces two adjacent
Kites), and the “Double Kite” (which indirectly forces an Ammann bar).

105



CHAPTER 8. SUMMARY AND CONCLUSION 106

Additionally, to verify our work against previous work, we computed the initial
Ammann bar sets which force the seven vertex configurations: Ace, Deuce, Star, Sun,
Jack, Queen, and King. The definition of these tiles in terms of pure Ammann bar
addresses has never been done before. Because the Ammann bars are such a compact
representation of the tilings, defining tiles in terms of the bars makes more sense than
using the tiles themselves.

Beginning to look for new forcings, we computed the empires of two “interfering”
Aces, spaced at different intervals from each other. In addition to these interference
patterns, we suggested other possible avenues of further study. Our methods may
be applicable to the three-dimensional version of Penrose tilings, advancing study in
that area. Also, an iterative empire-generating method using a combination of our
non-local methods and Socolar’s local methods may yield rules that could not be
found using either method alone.

It is our hope that the software and methods outlined in this work will assist
future research by providing a tool that frees the researcher from the hard work of
generating Penrose tilings. With such a tool, more can be learned about Penrose
tilings.



Colophon

This document was written in the LATEX document processing system, using GNU
Emacs as the editor. The figures in the document were created with the software
created for this research and ClarisWorks 4.0 (on the Macintosh). All figures were
cropped and made ready for press in Adobe Illustrator 8.0 (again, on the Macintosh)
before being exported to EPS format for inclusion in the LATEX document.

The software itself (“the tiling package”) was written in Java, version 1.1.8. It
makes use of Duane Bailey’s Java Structures packages for certain data structures
(mainly the GUI and large structures such as binary trees and hash tables). All the
other code is pure Java, consisting of over 6,000 lines of original code spread out over
18 classes.

To “date” this work: the figures produced by the software were rendered on a Sun
Ultra workstation, and usually took between 10 minutes and 3 hours to complete,
depending on the complexity of the picture. The average personal computer today
has a 750MHz processor, 128MB of RAM and a 10GB disk drive for secondary storage.
Such a device would cost $1,500. By comparison, a year of tuition at Williams College
costs $30,000, and a Big Mac costs $2.79.

107



Bibliography

[CL90] J. H. Conway and J. C. Lagarias. Tiling with polyominoes and combinatorial
group theory. Journal of Combinatorial Theory, Series A, 53:183–208, 1990.

[Dan89] L. Danzer. Three-dimensional analogs of the planar penrose tilings and
quasicrystals. Discrete Mathematics, 76:1–7, 1989.

[Dis59] W. Disney. Donald in mathmagic land. Walt Disney Home Video Release,
1959.

[GS87] Branko Grünbaum and G. C. Shephard. Tilings and Patterns, chapter 10.
W. H. Freeman and Company, New York, 1987.

[Min98] Linden Minnick. Generalized forcing in aperiodic tilings. Technical report,
Williams College Department of Computer Science, 1998.

[Pen74] Roger Penrose. The rôle of aesthetics in pure and applied mathematical re-
search. Bulletin of the Institute of Mathematics and Its Applications, 10:266–
271, 1974.

[Soc91] Joshua E.S. Socolar. Growth rules for quasicrystals. In D. P. DiVincenzo and
P. J. Steinhardt, editors, Quasicrystals: The State of the Art, volume 11 of
Directions in Condensed Matter Physics. World Scientific, Singapore, 1991.

108


	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 - Introduction
	Tilings
	Aperiodic Tilings
	Penrose Tilings
	Legal Tilings

	2 - Background fo Research
	Ammann Bars: A Non-Local Aid
	Minnick's Thesis
	Proposed Work

	3 - Musical Sequences
	Theory
	Inflation
	Musical Sequence Rules
	Deflation
	Forcings

	Ammann Bars
	Five-Fold Interactions
	Extended Theory
	Forcing Arbitrary Ammann bars
	Minnick's Work

	Pseudo-Code Implementation

	4 - Forcing Rules
	Finding Forced Shapes
	Finding Unique Patterns

	Matching Patterns
	Forcing New Information
	Darts
	Minnick's Double Kite

	Drawing Tiles
	Kites
	Darts

	Review

	5 - Implementation
	Overview
	Musical Sequences and Ammann Bars
	Intersections
	Pattern Matching
	Feature Forcing
	Feature Drawing
	Pattern Matching Algorithm In Detail
	Scan Line Algorithm
	Mapping Verification

	Complexity
	Ammann Bars
	Further Optimizations


	6 - Results
	Verified Empires
	The Ace
	The Deuce
	The Sun
	The Star
	The Jack
	The Queen
	The King

	Dart with Minnick distances
	Kite with Minnick distances
	Ace constellation
	Ace empire
	Deuce constellation
	Deuce empire
	Sun constellation
	Sun empire
	Star constellation
	Star empire
	Jack constellation
	Jack empire
	Queen constellation
	Queen empire
	King constellation
	King empire

	7 - Ongoing and Future Work
	Interference
	Ace separation 1
	Ace separation 2
	Ace separation 3
	Ace separation 4
	Ace separation 5
	Ace separation 6
	Ace separation 7
	Three-Dimensional Work
	Iterative Verification

	8 - Summary and Conclusion
	Colophon
	Bibliography

