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Abstract

In 1989, Danzer presented a set of four tetrahedra which, along with their mirror
images, form aperiodic tilings of space when assembled according to certain matching
rules. Though not the �rst known aperiodic set in three dimensions, the Danzer
tetrahedra are attractive for a number of reasons, including several similarities to
the two-dimensional Penrose tiles and Robinson triangles.

We present an expanded version of Danzer's paper[Dan89], giving explanations
and proofs and removing some of the notation to provide a more readable and
comprehensible exposition of these tiles and their basic properties.

The tetrahedra in a Danzer tiling always meet face-to-face and vertex-to-vertex.
Thus the next fundamental unit of the tiling beyond the tiles themselves is the vertex
con�guration, a ball of tiles clustered about and sharing a central vertex. Danzer's
paper states that there are exactly 27 vertex con�gurations. We give a practical
algorithm to compute a complete \atlas" of vertex con�gurations, and show that
there are, in fact, 174.

Every patch in a Danzer tiling is duplicated an in�nite number of times in every
tiling, and the distance to the nearest identical copy is within a bounded multiple 
of the radius of the patch. Using a computational approach, we show how to place
a bound on .
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Chapter 1

Background

1.1 Introduction: Penrose Tiling

A tiling is a covering of the plane with a (possibly in�nite) set of tiles, each of which
is a subset of the plane. The shapes of the tiles are known as prototiles, and the
tiling itself is made up of copies of the prototiles. A tile must be closed; we will
consider only the case where the tiles are also bounded and connected, and where
the set of prototiles (the protoset) is �nite. A subset of the tiles in a tiling is called
a patch. We require that a patch be homeomorphic to a disk. That is, it must be
connected, there must be no two regions connected by a single point, and it must
contain no holes.

An example of a tiling composed of three prototiles is given in Figure 1.1. Sliding
the entire tiling along one of the two arrows shown generates a tiling which is
indistinguishable from the original. Tilings with this property have translational

symmetry and are said to be periodic. This seems like a natural property of any
tiling. If we cover large areas with only a �nite number of shapes, then, intuitively,
we must place them in a repeating pattern.

Contrary to intuition, however, there exist �nite protosets which are aperiodic.
That is, they produce only tilings with no translational symmetry. No matter how
we translate the tiling, it never looks exactly the same as before the translation. In
1966, Berger discovered a set of 20,426 tiles that would only tile the plane aperi-
odically. By 1974, Penrose had reduced that number to two. Penrose's thin and
thick rhombs, when �tted together according to certainmatching rules, produce only
tilings without translational symmetry. Though we usually �nd it more convenient
to think of the matching rules as restrictions on the way tiles may be �tted together,
it is almost always possible to enforce the matching rules by making notches and
knobs on the sides of the tiles like pieces of a jigsaw puzzle. The Penrose tiles (and

1
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Figure 1.1: A periodic tiling. The upper left corner shows the three prototiles used
to construct the tiling. The tiling can be translated according to either of the two
arrows without e�ect. Tilings with such translations are periodic.[Tre96]
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their close cousins, the Conway kites and darts and the Robinson triangles) have a
signi�cant body of work relating to them. We mention only a few interesting results
here:

These tilings obey ination and deation rules. Kites and darts, for example, can
be subdivided into smaller versions of themselves or combined into larger ones. This
can be used to prove that perfect in�nite tilings exist and that they are aperiodic.

The Penrose tiles can be decorated with Ammann bars, line segments drawn on
the tiles. All tiles of a particular shape are decorated in the same way. When the
tiles are �tted in a tiling, the line segments join across tiles to form in�nite lines.
There are �ve orientations of in�nite Ammann lines, each set parallel to one side
of a regular pentagon. The distance between two adjacent parallel lines is always
one of two values, which we will call long and short. The ratio of the long to the
short interval is the golden ratio, � = (1 +

p
5)=2 � 1:618 : : :, and the sequence of

long and short intervals itself forms a particular type of aperiodic sequence called a
Fibonacci sequence, also known as a musical sequence.

The placement of a few tiles restricts the way in which a tiling can be constructed
around them. For example, given a patch, it can be shown that although in�nitely
many tilings can be grown outward from this patch, all extensions must contain a
particular tile in a particular position. This tile is said to be forced by the patch.
The locations of tiles are related to the intersections of Ammann lines. In fact, it
can be shown that the Ammann lines determine the tiling rather than the other way
around. The Ammann lines determined by a patch can force an in�nite number of
other Ammann lines. A patch can force tiles at arbitrarily large distances. The
collection of all tiles forced by a given patch is called the empire of the patch. These
non-local e�ects present a di�culty when trying to \grow" Penrose tilings by adding
tiles to the edge of a patch. There are instances when it is impossible to tell from
purely local information that a given tile is forced. Stated a di�erent way, a locally
legal tile placement can force an inconsistency at a distance, thus producing a defect
in the tiling. Recent work by Minnick[Min98] has shown that Ammann lines forced
by a patch are not entirely determined by the Ammann lines that pass through it.
In some cases there are several possible arrangements of tiles, all of which determine
a particular Ammann line.

The fact that a Penrose tiling does not have translational symmetry does not
imply that all parts of the tiling look somehow \di�erent." In fact, any patch, no
matter how large, is guaranteed to appear an in�nite number of times in every tiling,
and the distance from one instance to its nearest copy is guaranteed to be less than
some �xed multiple of its radius. This underlies a proof that the equivalence of two
tilings is not decidable.

These tilings exhibit long-range �vefold rotational symmetry. It is not possible
to construct a periodic tiling of the plane with �vefold symmetry.
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1.2 Quasicrystals

Until 1984, solids were grossly categorized into two classes, glasses and crystals.
The atoms in a glass are packed randomly, while those in a crystal are arranged in
a regular lattice. The parallel planes of similarly oriented atoms in a crystal reect
incoming particles in such a way that the reected waves form distinct interference
patterns that can be used to deduce the structure of the crystal. A central tenet
of traditional crystallography is that the only possible rotational symmetries of a
crystal plane are two-fold, three-fold, four-fold, and six-fold, reecting the fact that
triangles, squares, and hexagons are the only regular polygons that can tile the plane
with no gaps.

In 1984, Schectman, Blech, Gratias, and Cahn rapidly solidi�ed a molten al-
loy of aluminum and manganese. Electron di�raction of the resulting solid showed
that it had �vefold rotational symmetry, previously considered impossible. It was
hypothesized that the arrangement of atoms in this quasicrystal resembled a three-
dimensional aperiodic tiling with icosahedral symmetry. The work on aperiodic
tilings, previously published as recreational mathematics, suddenly had an appli-
cation in materials science, and since that time articles on tiling have appeared in
journals of both mathematics and physical chemistry. Later researchers have re�ned
production methods and have produced quasicrystals with 8-fold, 9-fold, 12-fold,
and other previously \forbidden" rotational symmetries. There is some opposition
to the conjecture that quasicrystals resemble aperiodic tilings. It remains unclear
how atoms attaching themselves to the outer edge of a growing quasicrystal could
obey the non-local requirements of forced tiles.

1.3 Recommended Reading

Gr�unbaum and Shephard's book[GS87] is a broad and readable text on tiling. Chap-
ter 10 is essential reading for anyone interested in aperiodic tiling.

Penrose's \Pentaplexity"[Pen84] o�ers an interesting account of the development
of the Penrose tiles and gives two simple proofs that the tilings they produce are
aperiodic.

In a pair of papers, Levine and Steinhardt[LS86] and Socolar and Steinhardt[SS86]
give an extensive overview of the structure and properties of quasicrystals. Saitoh,
Tsuda, and Tanaka[STT97] give a chemistry-oriented description quasicrystal struc-
ture.

Considerable attention has been focused on methods for growing tilings accord-
ing to purely local matching rules, in order to demonstrate a mechanism by which
quasicrystals might form. Jeong and Steinhardt[JS94] present a model of quasicrys-
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tal formation that relies on overlapping low-energy clusters. Gummelt[Gum96] gives
a single decagonal prototile that can be used to construct Penrose-equivalent tilings
by allowing tiles to overlap according to matching rules. Jeong and Steinhardt[JS97]
give a simpler proof that the coverings produced by Gummelt's decagons are equiva-
lent to Penrose tilings and show that maximizing the density of the tiles is equivalent
to Gummelt's overlapping rules. Steinhardt[Ste96] summarizes these results. On-
oda, Steinhardt, DiVicenzo, and Socolar[OSDS88] developed a method of growing
perfect Penrose tilings using local matching rules by adding a thick rhombus in a
particular way whenever no placements are forced. Socolar[Soc91] gives a detailed
account of purely local matching rules for Penrose tilings that result in structures
with long-range quasicystalline order. Baake, Ben-Abraham, Klitzing, Kramer, and
Schlottman[BBAK+94] catalog all possible arrangements of tiles around a vertex (in-
cluding those which do not admit a tiling) for two-dimensional and three-dimensional
tilings. This paper will be of particular interest to us in Chapter 5 when we do the
same for the Danzer tiling.

Steinhardt and Socolar have constructed a three-dimensional analog of the Pen-
rose tiling. Danzer[Dan89] gives a set of four tetrahedra extracted from the symme-
try planes of a regular icosahedron that produce an aperiodic solid when assembled
according to matching rules. The tetrahedra obey ination and deation rules. We
are particularly interested in the Danzer tiling because it has simple and elegant
ination rules and consists of only four tiles and their mirror images.



Chapter 2

A Basis for Tiling in Three

Dimensions

The German mathematician Ludwig Danzer published a paper in 1989 in which he
outlined a model for aperiodic tilings in three dimensions[Dan89]. The paper is in
two parts. The �rst gives a \semi-axiomatic" approach, stating several requirements
which, if met by a set of tiles, will ensure that they form only aperiodic tilings
with certain desirable properties. The second part gives an aperiodic set of four
tetrahedra which meet all of the requirements and gives some of the properties of
the tiling they produce. Danzer's paper is quite short and uses a great deal of
mathematical notation. All of his theorems are stated without proof, including the
several parts of the main theorem concerning the properties of his tiling.

In this chapter we survey the �rst section of the paper, which concerns some
rules an aperiodic set must follow. We follow Danzer's presentation fairly closely,
providing explanations of di�cult concepts and supplying proofs of the theorems.

2.1 De�nitions

A prototile is a closed ball of points. A tile is a copy of some prototile, a set of points
congruent without reection to it. In general, we use \prototile" and \type of tile"
to mean the same thing, and use \tile" only when referring to a particular instance
of some prototile. A protoset is a set of prototiles each with some maximum and
minimum size; that is, each tile must contain a sphere of radius rmin and be contained
within a sphere of radius rmax. A patch is a (possibly in�nite) set of tiles such that
no two tiles overlap and their union has no holes. That is, the pairwise intersection
of the tiles in the patch is empty and the patch is homeomorphic to a ball. If a
patch is �nite, then it has a diameter, which is de�ned to be the maximum distance

6
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between any two points in the patch. The radius of a patch is half the diameter.
These de�nitions correspond to the intuitive de�nition of three-dimensional tiles and
tilings: a tile is a single piece of space with no strange features like holes or sections
connected only by a point or a line, and a patch is a collection of tiles �tted snugly
together.

A tiling is in�nite if covers all of space. A tiling A is aperiodic if it is in�nite and
has no translational symmetry, i.e. there is no translation ~T such that ~T (A)= A.
A protoset S is an aperiodic set if all tilings that can be created using the tiles of
S are aperiodic. We will generally use `tiling' to mean an in�nite aperiodic tiling
unless otherwise speci�ed.

2.2 Basic conditions for a family of prototiles

Let F be a protoset S1; S2; : : : ; Sm of polyhedra. These will be the models for the
tiles we use to construct a tiling. To ensure that all tilings that can be formed from
these tiles are aperiodic, we may choose to impose matching rules to restrict the
ways in which tiles may be placed adjacent to each other. We de�ne an equivalence
relation� on the set of all the faces of all the prototiles that will encode the matching
conditions; two faces may be placed next to each other only if they are equivalent
according to �. We require that � be at least as strong as Euclidean congruence.
That is, two matching faces must always be congruent, but � may impose some
additional restrictions. This ensures that the tiling is always face-to-face. An (F ;�)-
tiling is a patch P composed of tiles each of which is a copy of one of the prototiles
in F , matched according to �.

Danzer places �ve requirements on F and P. We have already stated the �rst of
these, which is that the tiling must be face-to-face. Danzer gives this requirement
the label (A). The other conditions are given in the following four sections. The
�rst two requirements guarantee the existence of in�nite (F ;�)-tilings and that all
such tilings are aperiodic. The remaining two requirements ensure some desirable
properties of all (F ;�)-tilings. As we state each condition we will elaborate on its
meaning and examine some of the implications it holds for the structure of a tiling.

2.2.1 Ination

(In) Each tile must be uniquely inatable. That is, we must be able to construct
each tile out of smaller copies of some of the prototiles of F , and there must
be only one way in which this can be done. All the smaller tiles must be
scaled by the constant factor ��1, where � > 1. If two faces are equivalent
under � (that is, they may meet in a tiling), then the way in which they are
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dissected by an ination must be congruent. This maintains the face-to-face
requirement when adjacent tiles are inated.

In general, inating a patch means inating every tile in it. Inating all the tiles
in an (F ;�)-tiling P produces an (��1F ;�)-tilingQ which occupies the same space.
We call Q the ination of P, and denote it in(P). If we then scale all the tiles
in Q by �, so that they are the same size as the original tiles of P, we obtain �Q,
called the expansion of Q. We can iterate the ination-expansion process. When we
inate a tile twice, we �rst inate it once, and then inate every tile in the resulting
patch. We write the kth iteration of the ination as ink(P).

If we iteratively inate and expand a patch, we can generate arbitrarily large
tilings. This means that we can generate an in�nite tiling by inating a tile an
in�nite number of times, expanding by � each time.

We now consider Robinson's triangles as a two-dimensional example of ination.
There are two sets of four Robinson triangles, known as the A tiles and the B tiles.
In each set there are two shapes and their mirror images. We use capital and lower
case letters to denote the shape of a tile, and add a prime (0) if it is mirrored (or
left-handed). So the four A tiles are A, A0, a, and a0, and similarly for the B tiles.
Each set is aperiodic, so we can build a nonperiodic tiling using exclusively A or B
tiles. We require two sets of tiles because when A tiles are inated, they produce B
tiles, and vice versa. Note that we may choose to perform double inations at each
step to maintain a single set of tiles.

Figure 2.1 shows the two sets of tiles. The dots and arrows are markings which
indicate the matching conditions | tiles may only be placed so adjacent markings
are aligned. Figure 2.2 shows the ination of the right-handed Robinson tiles. B
tiles can be made of smaller A tiles, and A tiles can be made of smaller B tiles.

In this case, the scaling factor � is � = 1+
p
5

2
= 1:618034 : : :, the golden ratio.

The inations of the left-handed tiles are the same with the handedness of all the
components reversed.

2.2.2 Deation

(De) Every in�nite tiling must have a unique deation, written de(P), which
inverts the ination mechanism de�ned above by combining patches into single
larger tiles. For every in�nite (F ;�)-tiling P there is exactly one (�F ;�)-tiling
Q such that in(Q) = P.

The deation process can also be iterated. We denote the kth deation of a patch
P by dek(P). Note that only in�nite tilings are guaranteed to be deatable. Not
all �nite patches can be deated. For instance, if we take a tile, inate it to get a
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B B’

b b’

A A’
a a’

Figure 2.1: The Robinson triangles. The A tiles (top) and B tiles (bottom) form
two aperiodic sets. There is a right-handed and left-handed version of each tile;
left-handed tiles are indicated with a prime (0) and drawn in grey.

B

A

B

b

A

A

B

bB

a A

a

B

A
’

Figure 2.2: Inating the right-handed Robinson triangles. Each of the four patches
shows the ination of the tile in the boxed label below it.
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patch of several tiles, and then delete one of them, we have a patch which cannot be
deated. However, any patch which is part of an in�nite tiling is always contained
within a �nite patch which has a unique deation, as we will show in the proof of
Theorem 2.2.

The fact that inations and deations are unique and can be iterated allows us
to prove the following Lemma:

Lemma 2.1 All in�nite (F ;�)-tilings are aperiodic.

Proof Suppose that we have an in�nite (F ;�)-tiling A which is periodic. Then
(by the de�nition of periodicity) there is some nontrivial translation ~T such that a
translated copy of A overlaps A exactly, i.e. ~T (A) = A.

Consider a vertex v1 of some tile in A and its image under ~T , which we will call
v2. Iteratively deate A until the shortest side of any tile is longer than the length
of ~T , obtaining the tiling dek(A), and suppose that we have chosen v1 so that it is
still a vertex in the deated tiling. (We can always choose such a v1 because vertices
are never removed by ination. Thus any vertex in dek(A) is also a vertex in A.)
Clearly v2 cannot lie on a vertex of dek(A), since the distance from v1 to v2 is less
than the distance from v1 to the nearest vertex.

Now suppose that we translate A by ~T before performing the same process as
above. Recall that ~T is de�ned such that ~T (A)= A, so this translation should have
no e�ect on the deation. As before, we deate the tiling, obtaining dek(~T (A)).
The deation produces a vertex at the new location of v1, which is v2. But we
showed above that when we deate the untranslated tiling A, there is no vertex
at v2. Thus the tilings A and ~T (A) are identical, yet they produce two distinct
deations. This violates the requirement that deation be unique. Therefore there
is no such ~T , and all in�nite (F ;�)-tilings must be aperiodic. 2

See Figure 2.3 for a demonstration of the proof below using a Robinson tiling.
Any periodic tiling obeys ination and deation rules; consider a square grid,

where groups of 4 squares can be combined to form a larger square. The di�erence
is that the deation is not unique. A single square could be part of more than one
cluster of four, as illustrated in Figure 2.4.

2.2.3 Minimality

A set of tiles which meets the requirements above can be inated and deated
uniquely and is guaranteed always to produce an aperiodic tiling. There are some
other characteristics of tilings which are useful. To ensure that all tilings have
some other desirable properties, Danzer imposes additional restrictions on the set
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(a) A portion of a Robinson tiling A,

showing a proposed translation ~T .

(b) After k deations, v1 is still a vertex
but v2 is not.

(c) The tiling ~T (A). Vertex v1 has been
translated to the former location of v2.

(d) A deation of ~T (A). There is now a

vertex at ~T (v1) = v2.

Figure 2.3: Unique ination and deation guarantee aperiodicity. If A is periodic,
then ~T (A) = A. There is a vertex at v2 in dek(~T (A)), but not in dek(A). Thus
two identical periodic tilings can produce two di�erent deations.
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Figure 2.4: Deation of a periodic tiling is not unique. The shaded tile could be
part of either of the larger outlined squares.

of prototiles. Before we look at the �rst of these restrictions, we will explore an
interesting way of denoting ination and deation. This will be useful in proving
some of the consequences of the next requirement.

We can write the components of the ination of each tile in an ination matrix

M where Mi;j is the number of copies of prototile i used in the ination of j. It is
clear that we can also represent the second ination of every tile as a matrix, which
we will callM2. The relationship betweenM andM2 is most easily determined by
looking at an example. Consider a system of two tiles with the following ination
matrix:

M X Y

X 0 1
Y 2 3

.

This table shows that one X tile inates to 2 Y tiles, and a Y tile inates to
an X and 3 Y 's. Inating an X tile twice produces two Y 's in the �rst ination,
and two X's and 6 Y 's in the second ination. Performing the same process on a Y
tile, we see that after two inations a Y becomes 3 X's and 11 Y 's. So the second
ination matrix looks like this:

M2 X Y

X 2 3
Y 6 11

.

To see the relationship between M and M2, let's take a closer look at how we
derived M2 and consider the number of Y tiles used in the second ination of an
X tile. We use two Y 's for each X in the �rst ination and three for each Y . We
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multiply the number of X's in the �rst ination by the number of Y 's each one
will produce, and then add the product of the Y 's in the �rst ination with the
number of Y 's they will produce. In this case, the formula is (0)(2) + (2)(3) = 6.
The key is that we can also write this as the product of row Y and column X ofM:
(2; 3) � (0; 2)T = 6. This formula is true for each location in the matrix, and so M2

is in fact exactly what its name suggests, the matrixM squared: 
0 1
2 3

! 
0 1
2 3

!
=

 
2 3
6 11

!
.

In general, Mn is the nth ination matrix. Each column of Mn represents
the number of each type of tile used in the nth ination of a particular prototile.
Now that we can characterize the ination mechanism as a matrix and any level of
ination as a power of that matrix, we are ready to state the third requirement we
would like our tilings to obey:

(Min) The set of prototiles must be minimal; that is, there must be no subset of
the prototiles that obeys the same ination and deation mechanism.

Minimality gives rise to several interesting properties of an (F ;�)-tiling. First,
note that an alternate statement of the requirement is that if we begin to generate
an in�nite tiling by repeatedly inating a single prototile, we must at some point
generate a patch containing all types of tiles. If we could inate forever without ever
using a particular prototile, then F would not be minimal. Thus if we inate any
prototile from a minimal set a su�cient number of times, we get a patch containing
all types of tiles. We de�ne J to be the maximum number of times we need to inate
any prototile to get such a patch. Note that J must be strictly less than the number
of prototiles: each ination must introduce at least one new type of tile until all
are present. If we inated once without obtaining a new prototile, then we would
never produce a new one after that. Let us examine what this implies in terms of
the ination matrix.

Recall that a column in M, which we will label C, represents the number of
each type of tile generated by the ination of prototile C. Obviously no column in
M can be all 0's, since that would mean that tile C inates to nothing. If we have
a minimal set of tiles, it is also impossible for any row of M to be all zeros, since
that would mean that some tile was never produced by an ination, and the set of
tiles would not be minimal. Minimality may impose more restrictions than these
on the form of the ination matrixM, but these are all we will need in the coming
discussion.

Now consider the implications for higher powers of M. If the kth ination of
tile C contains all types of tiles, then column C of Mk has no entries which are
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zero. So when we say that inating any tile a su�cient number of times produces
a patch containing all types of tiles, we mean that for each column of M there is
some power of M in which all the elements of that column are positive.

In fact, once a column in Mk has no zero entries, there can never be any zero
entries in any higher power. Consider what happens to a uniformly positive column
C when we multiply by M. Each entry inMC is the product of C with some row
of M. Because C has no zeros (and because there obviously can be no negative
entries inM), the only way for an entry of MC to be zero is for a row of M to be
all zeros, and since we assumed a minimal set this cannot be the case. Thus if we
have a patch containing all types of tiles (a column with no zeros), no type of tile
will disappear completely when we inate the patch. In other words, if a patch P
contains all types of tiles, then in(P) also contains all types of tiles.

So far we know that (Min) requires that every column inMk have no zeros for
some k � J and that inating a patch containing all prototiles produces another
patch which also contains all prototiles. Combining these observations, we see that
in fact inating any prototile exactly J times gives a patch containing all types
of tiles. We may have gotten such a patch before the J th ination, but we have
shown that we have not lost any prototile by continuing to the J th ination. Any
subsequent inations will also not cause any prototile to disappear completely from
the patch. In terms of the ination matrix, MJ has no zero entries in any column,
and all higher powers of M also have no zero entries. This conclusion is important
enough to be restated more formally in the following theorem:

Theorem 2.1 There exists some natural number J such that for every j � J and

every prototile Sn, in
j(Sn) contains at least one instance of every prototile. Thus

if M is the ination matrix, then Mj contains no zero entries for every j � J .

Corollary 2.1 The distance between a tile and its nearest identical copy is bounded.

Proof Inating any prototile 2J times produces a patch containing more than one
instance of each prototile. Every tile T in an in�nite tiling lies within a patch I that
is the 2J th ination of some prototile. Since I contains more than one instance of all
prototiles, the distance to the nearest copy of T can be no more than the diameter
of I. 2

Corollary 2.2 Every prototile occurs with a non-zero relative frequency in an in�-

nite tiling. That is, the ratio of the number of instances of one prototile to the total

number of tiles in the tiling is non-zero.
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Proof An ination increases the number of tiles in a patch by some factor �,
which can be no larger than the maximum number of tiles in the ination of any
prototile. Thus if a patch P contains n tiles, then inJ(P) contains no more than
�Jn tiles. Every tile in P produces at least one instance of each prototile after J
inations. Thus there must be at least n instances of every prototile in inJ(P), and
so each prototile must represent at least 1=�J of the tiles in the patch. This is true
regardless of the starting patch, and thus we conclude that the relative frequency of
each prototile is non-zero in arbitrarily large patches. 2

2.2.4 Local Isomorphism

By requiring the tiling to be face-to-face, we also ensure that the tiling is vertex-to-
vertex. A vertex of one tile can never intersect another tile in the middle of one of its
faces or along one of its edges, only at one of its vertices. Thus any interior vertex of
a patch is shared by one corner of each of a number of tiles. A vertex con�guration

is an arrangement of tiles around a central vertex so that their union subtends the
full solid angle around the center. That is, all points within any su�ciently small
ball around the central vertex are covered by some tile. If all the tiles of a vertex
con�guration C share the vertex v, then we say that C is centered at v (though v
may not be the center of mass of the vertex con�guration).

The �nal requirement we impose on an (F ;�)-tiling is as follows:

(EVC) Every vertex con�guration which occurs in an in�nite tiling must occur in
the patch generated by inating some prototile a su�cient number of times.
We will call the maximum number of inations needed to produce any vertex
con�guration H. (So there is some con�guration which never occurs before
the Hth ination of any prototile.)

This �nal requirement implies that a (F ;�)-tiling is locally isomorphic, as ex-
pressed in the following theorem:

Theorem 2.2 Any patch in an in�nite tiling must always be duplicated within some

�xed multiple  of its radius.  does not depend on the radius of the patch.

This is a rather startling statement, and it is not obvious that it is true or that
it is a consequence of (EVC). We are saying that if we pick any patch of a tiling,
then there will always be an exact copy of that patch nearby. An obvious corollary
is that any patch must be duplicated an in�nite number of times throughout the
tiling. And yet we know the tiling is not self-similar under translation! We �rst
prove the following Lemma:
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The shaded region is the patch P, shown in a
portion of an in�nite Robinson tiling.

The same region P after the tiling has been
deated once.

Figure 2.5: Containing a patch in a vertex con�guration, steps 1 & 2.

Lemma 2.2 The image of any �nite patch P in an in�nite tiling T will be entirely

contained in some vertex con�guration when the tiling is deated a su�cient number

of times. The deation scales the tiles of T by a factor proportional to the diameter

of P.

A demonstration of this Lemma is given in Figures 2.5 { 2.7. We use a tiling by
the Robinson triangles for this example.

Proof Consider a patch P with diameter d, contained within an in�nite tiling T .
The intuition behind the following proof is that if we deate T enough, the tiles
will be so large that the image of P cannot possibly span a vertex con�guration. It
seems clear that if P is miniscule compared to tile tiles of T , then it must lie within
a vertex con�guration. We wish to show that the tiles need only be expanded by a
factor proportional to the diameter of the patch, however, so we will need a more
detailed analysis.

We now consider the image of the patch P in some deation dek(T ) of T .
Recall that a deation increases the dimensions of the tiles by a factor of �. Thus
the tiles in dek(T ) have been expanded by a factor of �k with respect to those in
T . We claim that �k is proportional to the diameter of P.
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P after two deations. P after three deations.

Figure 2.6: Containing a patch in a vertex con�guration, steps 3 & 4.

P after four deations.
After �ve deations, P is contained within the
outlined vertex con�guration.

Figure 2.7: Containing a patch in a vertex con�guration, steps 5 & 6.
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Let I be the set of tiles intersected by P. If I consists of only one or two tiles,
then clearly P lies within a vertex con�guration. Thus we consider the case when I
contains at least three tiles. Because it intersects more than one tile, P must cross
an edge E between tiles. If P is contained within any vertex con�guration, then it
must be one of the con�gurations centered at an endpoint of E. Thus if P is not
contained within a vertex con�guration, then I must include some tile which does
not have a vertex at either of the endpoints of E.

We say that edges which share an endpoint with E are adjacent to E. If P inter-
sects a tile which does not touch an endpoint of E, then it must cross an edge which
is not adjacent to E. Thus if the diameter of P is less than the shortest distance
from any point on E to a non-adjacent edge, then P cannot possibly intersect a tile
which does not have a vertex at an endpoint of E, and so P must lie within a vertex
con�guration.

Given a vertex con�guration, we can compute the smallest distance from any
point on an edge E to the nearest point on a non-adjacent edge. We will call this
value the span of the vertex con�guration. The minimum vertex con�guration span
of a tiling, denoted Vmin, is the smallest span of any vertex con�guration of the
tiling. Vmin is a non-zero constant dependent on the shapes of the tiles. Since a
deation increases all dimensions of the tiles by a factor of �, Vmin for dek(T ) is
larger by a factor of �k than Vmin for T . Thus given a tiling T with minimum vertex
con�guration span Vmin and containing a patch P, there exists a k such that �kVmin

is greater than the diameter of P by no more than a factor of �. Hence the image
of P lies within a single vertex con�guration in dek(T ), and the deation expands
T by a factor proportional to the diameter of P. 2

We make two notes concerning this Lemma. The �rst is that the granularity of
the deation implies that �k may be greater than the diameter d of the patch by a
factor of nearly �. Secondly, the span of a vertex con�guration is easily computed
if all the tiles are triangles (or higher-dimensional equivalents, such as tetrahedra).
In this case, the span is equal to the shortest edge which has an endpoint at the
central vertex of the con�guration. Thus Vmin for a set of triangular tiles is simply
the length of the shortest edge of any tile.

Proof of Theorem 2.2 Armed with the Lemma, the proof of local isomorphism
is fairly straightforward. The Lemma tells us that if we choose a patch P within
tiling T , then we can be sure that P is contained within a single vertex con�guration
C in the kth deation of T for some k � 0.

If we reinate T , of course, then the reination of C will contain P. In fact,
any vertex con�guration identical to C will produce a patch identical to P when it
is inated k times. So if we show that there is guaranteed to be another copy of C
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A nearby identical vertex con�guration and
the corresponding image of P. P and its copy after one ination.

Figure 2.8: Finding a duplicate patch, steps 1 & 2.

P and its copy after two inations. P and its copy after three inations.

Figure 2.9: Finding a duplicate patch, steps 3 & 4.
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P and its copy after four inations.
After �ve inations, the original tiling is re-
stored, and an exact copy of P located.

Figure 2.10: Finding a duplicate patch, steps 5 & 6.

nearby, then we know that reinating T will produce another copy of P.
Recall that in the discussion of requirement (Min) we showed that every pro-

totile occurs an in�nite number of times in an in�nite tiling. (EVC) requires that
every vertex con�guration occur within H inations of some tile. Together these
facts imply that every vertex con�guration occurs an in�nite number of times in an
in�nite tiling. Thus there will always be another copy of C which, when inated k
times, will produce an identical copy of P.

Here is a brief restatement of the method we can use to �nd a duplicate patch:
Begin by picking the patch P. Deate the tiling k times until P lies entirely within
a single vertex con�guration C. This is shown in Figures 2.5 { 2.7. We know by
(EVC) that there is a prototile Sn which, when inated h � H times, produces
a copy of C. Deate the tiling another h times, search for the nearest copy of Sn
(which by Corollary 2.1 is a bounded distance away), and reinate h times. We
have found the nearest copy of C to the particular C that contains P. Reinating
k times will reproduce the original tiling, and the reination of the copy of C will
produce an exact copy of P. The illustrations skip the process of �nding the copy
of C, but Figures 2.8 { 2.10 show the reination of the tiling and the location of the
duplicate patch.
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Hence every patch is duplicated elsewhere within the tiling. By the Lemma, the
size of C depends of the size of the patch. Once P was contained within C, we
deated no more than H times, moved a bounded distance, and reinated. Thus
the distance between the two copies of C is no more than �H times the maximum
distance between identical tiles, a constant. When we reinate k times, we will
increase this distance by a factor proportional to the size of the patch. Therefore
we have shown that any patch in an in�nite tiling must be duplicated within the
tiling, and that the maximum distance to the copy is proportional to the radius of
the patch. 2

Corollary 2.3 Any patch found within an in�nite tiling must occur an in�nite num-

ber of times in every in�nite (F ;�)-tiling.

Proof In our construction, we chose the nearest copy of the prototile Sn to �nd
the nearest copy of C and thus the nearest copy of P, but clearly any instance of
Sn would have done as well. Since we know from Section 2.2.3 that every prototile
occurs an in�nite number of times in every in�nite (F ;�)-tiling, through the process
above we can locate an in�nite number of duplicates of P. 2

Corollary 2.4 There is no algorithm which can decide in a �nite number of steps

whether two tilings (given as in�nite sets of tiles) are equivalent.

Proof Any algorithm for comparing tilings must compare a �nite number of tiles
in a �nite number of steps. Thus the maximum distance between any two tiles
considered by the algorithm is �nite, and they all lie within some patch. By the
previous Corollary we know that this patch is duplicated in every (F ;�)-tiling.
Therefore equivalence of tilings is not decidable in �nitely many steps. Of course,
this applies only to tilings given as in�nite sets of tiles. If we were given tilings as
generating rules, for instance, equivalence might be easily checked. 2



Chapter 3

Danzer's Tetrahedra

This chapter covers the second half of Danzer's paper. We give a family F1 of
four prototiles and a matching relation �1 developed by Danzer which meet the
above requirements, and discuss some properties of the tiling they produce. As
in the previous chapter, we augment the material from the original paper with
explanations and proofs.

The �rst section de�nes the shapes of the tiles, some notation we will need in re-
ferring to them, and the matching relation �1. Section 3.2 discusses the adjacencies
of tiles allowed under �1, knowledge which will prove useful in later sections.

Danzer presents a �ve-part main theorem concerning the properties of (F1;�1)-
tilings. This chapter will cover the �rst three parts of this main theorem; the
remaining two are more conveniently discussed in the next chapter, since they are
related to the atlas presented there. Section 3.3 proves the �rst part of Danzer's
theorem, that the system (F1;�1) obeys the four requirements stated in the previous
chapter. The �nal two sections of this chapter prove the second and third parts of
Danzer's main theorem.

3.1 Construction

Table 3.1 presents the dimensions of the four tiles. For each edge, we give the
dihedral angle between the faces that share that edge and its length. The symbols

used in the lengths are a = (
q
10 + 2

p
5)=4, b =

p
3=2, and � = (1 +

p
5)=2, the

golden ratio. Figure 3.1 gives cut-out patterns for the tiles. We also give the solid
angle in square degrees subtended by each vertex of each tile in Table 3.2.

The four tiles given above we call (arbitrarily) right-handed to distinguish them
from their mirror images, which are also necessary to construct a tiling. We will
denote the right-handed tiles with capital A, B, C, and K, and the left-handed tiles

22
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Tile 1{2 2{3 3{1 2{4 1{4 3{4

A 36�; a 60�; �b 72�; �a 108�; a 90�; 1 60�; b
B 36�; a 36�; �a 60�; �b 120�; b 108�; a=� 90�; 1
C 36�; a=� 60�; �b 90�; � 120�; b 72�; a 36�; a
K 36�; a 60�; b 72�; a=� 90�; �=2 90�; 1=2 90�; 1=2�

Table 3.1: Dihedral angles and side lengths for the four Danzer tetrahedra.

Vertex
Tile 1 2 3 4

A 18 24 12 78
B 24 12 6 138
C 18 36 6 48
K 18 6 42 90

Table 3.2: The solid angle in square degrees of each vertex of the four Danzer
tetrahedra.
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Figure 3.1: Templates for the four Danzer tiles. Left-handed versions can be made
by simply folding the tiles so that the writing faces inward.
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as lower-case a, b, c, and k. We will also need to refer to speci�c vertices, faces,
and edges on each tile. We use Danzer's enumeration of the vertices and edges,
shown in Table 3.1. Each face is given the number of the vertex opposite it. We
use subscripts to refer to vertex numbers and normal-size numbers for faces. For
example, B2 refers to vertex 2 of a (right-handed) B tile, and B2 is the face opposite
it. Edges are written as the name of the tile subscripted by the numbers of the two
vertices at the ends of the edge. For instance, C24 has a dihedral angle of 120�.
Finally, we will use superscripts to denote a level of ination, so A0 is simply an A
tile, and A1 is the 11-tile patch obtained by inating an A tile once.

Now that we have a set of tiles, we can give an equivalence relation �1 on them,
which is de�ned by two rules. First, any face may match its mirror image. Second,
faces of two di�erent tiles (tiles which are not mirror images of each other) can
match only if they are congruent and neither of them has an edge with dihedral
angle 90� (a red edge). The A, B, and C tiles each have one red edge; the K tile has
three. The red edges are A14, B34, C13, K14, K24, and K34. As we investigate the
Danzer tiling in the coming sections, we will see how these matching rules enforce
an aperiodic tiling.

3.2 Face Adjacencies

The matching relation �1 de�nes 21 legal pairings of the faces of the tiles in F1.
Since every face is allowed to be placed adjacent to its mirror image, sixteen of these
are pairings between corresponding faces of opposite-handed tiles. The remaining
�ve are the intertile pairings, which de�ne the only ways in which di�erent prototiles
can meet.

We can deduce these pairings simply by inspection of the tiles. Since no face with
a red edge is allowed to meet anything but its mirror image, the only faces at which
intertile pairings could possibly occur are those without a red edge. These faces are
A1, A4, B3, B4, C1, C3, and K4, and the equivalent faces of the left-handed tiles.
The intertile adjacencies are all pairs of these faces which are congruent: A1-C1, A4-
B4, B3-C3, B3-K4, and c3-K4. These �ve pairings, along with the sixteen mirror
pairings, are all of the face adjacencies allowed under �1. Of course the handedness
of both tiles can always be reversed, so A1-C1 implies that a1 and c1 also match,
and c3-K4 implies C3-k4.

In fact, not all of these face adjacencies can occur in an in�nite tiling. A1-a1,
B3-b3, and B3-C3 cannot appear in an in�nite tiling because tiles cannot be placed
around them without violating the matching rules. The easiest way to see this is
to make models of the tiles from the patterns in Figure 3.1 and try to build around
these pairings, but we give brief explanations of why each of them is impossible here.
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A B C K a b c k

��1A 0 0 0 0 0 0 1 0
��1B 2 1 0 1 1 1 0 0
��1C 1 1 1 0 1 0 1 0
��1K 3 2 1 1 3 2 1 0

��1a 0 0 1 0 0 0 0 0
��1b 1 1 0 0 2 1 0 1
��1c 1 0 1 0 1 1 1 0
��1k 3 2 1 0 3 2 1 1

Table 3.3: The ination matrix for the Danzer tiles.

The A1-a1 pairing leaves an A3 face and its mirror image sharing an edge (the
A24 edge). Since A3 can only match a3, two more A tiles must be placed here, but
they would overlap. The argument is similar for the B3-C3 pairing. If we construct
the B3-C3 pairing and place face 1 of a b tile against B1 (the only neighbor allowed
for that face), then b3 is partially adjacent to C1, which violates the face-to-face
requirement. Finally, B3-b3 presents the same problem on two sides. Both the B1
and B2 faces must match their inverses, and they cannot do so without causing tiles
to overlap.

3.3 Meeting the Requirements

This section concerns the �rst part of Danzer's main theorem, which states that the
system (F1;�1) obeys the four requirements (In), (De), (Min), and (EVC).
We will prove that the system satis�es the �rst three of these. We will leave the
proof of (EVC) until the next chapter, where we discuss vertex con�gurations in
depth.

3.3.1 F1 satis�es (In) and (De) with � = �

We can show by construction that this system obeys the ination and deation
requirements (In) and (De). The ination matrix given in Table 3.3 gives the
components of the ination of each tile. For instance, an A tile can be constructed
from two (right-handed) B tiles scaled by ��1 and one (left-handed) copy of ��1b,
one copy of ��1C and one ��1c, three copies of ��1K, and three ��1k. The con-
struction of an a tile is identical with the handedness of all the components reversed.
Danzer presents the ination matrix for right-handed tiles only, and adds the num-
ber of left- and right-handed tiles together. In many cases it is convenient not to
distinguish between a tile and its mirror image, but in this case the di�erence is
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Vertex
Tile 1 2 3 4

A B3; b3; B3 B2;K2; k2 C3; c3 C2; k3
B b2;K2; k2 B3; b3 C3 B1; b1; C1; 2 �K1; 2 � k1
C a1 a2; C3; c3 K2 a3; c2
K B2;K2 B3 B1;K1 K4

Table 3.4: The e�ect of an ination on the vertices of each tile. The subscript is
the vertex number, a coe�cient is the number of copies. Thus 2 � K1 means two
instances of vertex 1 of a K tile.

signi�cant. Ination is not a symmetric operation; for example, A1 contains two
B tiles and one b tile. For this reason we have expanded the ination matrix to
di�erentiate between left- and right-handed components.

It is also useful to know the results of ination on the vertex of a tile. For
example, when an A tile is inated, vertex 2 of a C tile and vertex 3 of a k tile meet
at the point that was vertex 4 of the original A tile. Table 3.4 shows the e�ect of
an ination on each vertex of each of the right-handed tiles. The vertex inations
of the left-handed tiles are the same with all the components reversed.

Figures 3.2 - 3.5 show the inations of the right-handed tiles.

3.3.2 F1 satis�es (Min) with J = 4

As discussed in Section 2.2.3, we can show that F1 is minimal if some power of its
ination matrix has no zero entries. Table 3.5 shows the �rst four powers of the
ination matrix M.

Because Danzer does not distinguish between left- and right-handed tiles (he
adds the top and bottom halves of the ination matrices), he considersM3 to have
no zero entries, and so he states that J = 3. The third ination of a K tile, however,
contains an A tile but no a tile. There are no zero entries in M4, and so any tile,
when inated four times, will produce a patch containing all eight prototiles. Thus
we de�ne J = 4 for the Danzer tiling. By the results from Section 2.2.3, we know
that this implies that all prototiles are used in any in�nite tiling, that they appear
in roughly equal numbers, and that the distance between tiles of the same type is
bounded.

By raising the ination matrix M to large powers, we can obtain an estimate
of the relative frequency of each type of tile in an in�nite tiling (see Corollary 2.2).
We can also compute the density of each prototile, the portion of the total volume
of the tiling occupied by tiles of that type. Figure 3.6 shows for each prototile its
volume, the fraction of the tiles in an in�nite tiling which are of its type, and its
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Figure 3.2: Three views of the ination of an A tile. Outlined labels indicate the
vertices of the original tile.

Figure 3.3: Three views of the ination of a B tile.

Figure 3.4: Three views of the ination of a C tile.
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Figure 3.5: Two views of the ination of a K tile.

M A B C K a b c k

��1A 0 0 0 0 0 0 1 0

��1B 2 1 0 1 1 1 0 0

��1C 1 1 1 0 1 0 1 0

��1K 3 2 1 1 3 2 1 0

��1a 0 0 1 0 0 0 0 0

��1b 1 1 0 0 2 1 0 1

��1c 1 0 1 0 1 1 1 0

��1k 3 2 1 0 3 2 1 1

M2 A B C K a b c k

��1A 1 0 1 0 1 1 1 0

��1B 6 4 2 2 6 4 3 1

��1C 4 2 3 1 3 2 3 0

��1K 11 7 6 3 11 7 6 2

��1a 1 1 1 0 1 0 1 0

��1b 6 4 3 1 6 4 2 2

��1c 3 2 3 0 4 2 3 1

��1k 11 7 6 2 11 7 6 3

M3 A B C K a b c k

��1A 3 2 3 0 4 2 3 1

��1B 26 16 14 6 26 17 14 5

��1C 15 9 10 3 15 9 11 2

�
�1
K 48 30 28 10 48 30 28 9

�
�1
a 4 2 3 1 3 2 3 0

��1b 26 17 14 5 26 16 14 6

��1c 15 9 11 2 15 9 10 3

��1k 48 30 28 9 48 30 28 10

M4 A B C K a b c k

��1A 15 9 11 2 15 9 10 3

��1B 110 69 65 22 111 69 65 22

��1C 63 38 41 12 63 39 41 11

�
�1
K 203 126 123 40 203 126 123 39

�
�1
a 15 9 10 3 15 9 11 2

��1b 111 69 65 22 110 69 65 22

��1c 63 39 41 11 63 38 41 12

��1k 203 126 123 39 203 126 123 40

Table 3.5: Ination matrices for the �rst four levels of ination. The fourth level
contains no zero entries, so F1 is minimal.
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Figure 3.6: Approximate volumes, frequencies, and densities of the Danzer tiles.

Figure 3.7: Three views of the A-octahedron, with the tiles individually shrunk by
30% for clarity. The central edge is A14.

density. These values were measured in A11, and are accurate to �0:000001. We
will see in the next section that in an in�nite tiling each prototile and its mirror
image occur in equal numbers, and so their densities and frequencies are the same.
Thus we present these values for left- and right-handed tiles combined.

3.4 Octahedra

Theorem 3.1 In every (F1;�1)-tiling tiles of the same type cluster to form octa-

hedra. The K-octahedron is formed of eight K tiles (4 of each handedness); the A-,
B-, and C-octahedra consist of 4 tiles each.

Proof We can demonstrate the existence of the octahedra using the face adjacen-
cies discussed in Section 3.2. For example, consider an A tile. The A14 edge is a red
edge (it has a dihedral angle of 90�), and so the two faces which share it, A2 and
A3, may only meet their mirror images. Thus every A tile must be adjacent to two
a tiles, one on each of these faces. The a2 face of one of these a tiles is exposed,
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Color Members

Red A1; A4; B2; C4;K2

Green A3; B3; B4; C2;K3

Blue A2; B1; C1; C3;K1

Yellow K4

Table 3.6: The four vertex classes. Only vertices of the same class can meet in a
tiling. The colors were chosen to correspond to the colors of the tiles in the pictures
shown in the appendices.

as is the a3 face of the other. These must be matched by an A tile, completing the
octahedron shown in Figure 3.7. Every A tile must be a part of such an octahedron.

The argument is similar for the B- and C-octahedra. The K tile, unlike the
other three tiles, tile has three red edges, which force an 8-tile octahedron. The
K-octahedron is a simple, convex diamond shape with three orthogonal planes of
symmetry. The other three octahedra have two orthogonal planes of symmetry.
The A- and B-octahedra are concave, and the C-octahedron is convex. The K-
octahedron is the only one of the four to contain an interior vertex, and thus it
forms a vertex con�guration. Vertex con�gurations will be discussed in more detail
in the next chapter.

Corollary 3.1 The number of left- and right-handed versions of each prototile is

equal in an in�nite tiling.

All four octahedra contain equal numbers of left- and right-handed tiles and
every tile in an in�nite tiling must be part of an octahedron. Thus in an in�nite
tiling, there are an exactly equal number of instances of each prototile and its mirror
image.

3.5 Vertex Classes

Theorem 3.2 The vertices of the prototiles fall into four classes (or colors) such

that at every vertex in an (F1;�1)-tiling only vertices of the same color can meet.

(See Table 3.6.)

Proof We can extract the vertex classes from the face adjacencies given in Sec-
tion 3.2. We begin constructing a class with one vertex v, then add all the vertices
that can legally be placed adjacent to v, and so on to produce the transitive closure
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of the class. If there are any vertices not already classi�ed, we pick one arbitrarily
as the starting point for the next class.

Let us start with B3, and arbitrarily assign it the color green. Of course we
can pair any face of the B tile with its mirror image, so b3 is the same color as its
right-handed counterpart. The color of corresponding opposite-handed vertices is
always the same. If we place an A tile adjacent to a B tile so that A4 matches B4,
then vertex A3 meets vertex B3. Thus A3 is also green. The A1�C1 pairing places
C2 next to A3, so C2 is green. C3� k4 pairs k3 and C2, so k3 is green. Finally, the
B3�K3 pairing adds B4 to the list. We have accounted for all possible pairings of
the faces which contain a green vertex, and so the list is complete.

We will spare the reader the derivation of the remaining two classes, but the
process is the same. The vertex K4 is at the center of the K-octahedron, and only
ever meets itself. Table 3.6 lists the members of each of the four classes.



Chapter 4

An Atlas of the Danzer Tiling

In the previous chapter we discussed the Danzer tiles and some of the small-scale
structure of a Danzer tiling, such as face and vertex adjacencies and the way in
which the tiles always form octahedra. In this chapter we begin to investigate the
next level of structure, the vertex con�guration. A complete knowledge of the legal
vertex con�gurations is useful for several reasons. In the Penrose tiling, the vertex
con�gurations are important in understanding the ways in which tiles are forced,
and we believe that the same is true of the Danzer tiling. In addition, if an aperiodic
tiling is used as a model of a quasicrystal, then the vertices represent locations of
atoms and the vertex con�gurations are the possible arrangements of neighboring
atoms. This chapter begins the construction of an atlas of the vertex con�gurations
of the Danzer tiling. We will show that a Danzer tiling meets the �nal requirement
(EVC), and discuss the �nal two pieces of Danzer's main theorem:

(Icos) There are exactly three in�nite (F1;�1)-tilings with full icosahedral sym-
metry, and they permute cyclically under ination and subsequent expansion.

(Vert) There are exactly 27 vertex con�gurations, of which 22 occur in an in�nite
tiling. Except for the vertex at the center of the K-octahedron, every con�g-
uration becomes one of the three with full icosahedral group after at most six
inations.

We will begin by showing that we can �nd all the vertex con�gurations that
occur in an in�nite tiling by inspecting a �nite patch. We will show that there are
exactly 22 such con�gurations, con�rming Danzer's result. After discussing some of
the characteristics of these 22 con�gurations, we will be able show part (Icos) above
and that the Danzer tiling satis�es the local isomorphism requirement (EVC). As
we go, we will dispute or re�ne several of Danzer's results. Danzer claims that the

32
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constants associated with (EVC) have values H = 6 and  = 40 (see Section 2.2.4
for de�nitions). We will show that H = 7, and we will examine in detail the
distances between identical vertex con�gurations and arbitrary patches, enabling us
to place a tighter bound on the value of . Part (Vert) above states that all vertex
con�gurations inate to one of the three \balls" in no more than six steps. This is
true, but we will show that in fact no more than four inations are required.

The remaining vertex con�gurations mentioned in part (Vert), which are locally
legal but cannot appear in an in�nite tiling, will be discussed in the next chapter.

4.1 Finding the Global Con�gurations

The �rst step is to �nd the vertex con�gurations which can occur in an in�nite
tiling, which we will refer to as the global vertex con�gurations. We will call the
complete listing of global vertex con�gurations the global atlas, or just the atlas.

We will assume for the moment that the Danzer tiles satisfy (EVC), which
requires that every global vertex con�guration be produced by no more than H
inations of some prototile. This assumption will be justi�ed in Section 4.4. Given
this fact, we can �nd all the global vertex con�gurations simply by inspecting the
patches produced by inating each prototile H times. In fact, since (Min) guaran-
tees that inating any prototile J times produces a patch containing all prototiles,
we need only consider the inations of a single tile. Thus if we inate any tile no
more than H+J times, pausing after each ination to inspect the patch and record
any new con�gurations, we will obtain a complete atlas of the global con�gurations.

The only remaining problem is to determine the value of H: how do we know
when our atlas is complete? This question is addressed by the following Theorem:

Theorem 4.1 If an ination generates no new vertex con�gurations, then no sub-

sequent ination will ever produce a new vertex con�guration.

Proof Consider the three localities in which a new vertex con�guration can occur
as the result of the ination of a �nite patch P: at a vertex, along an edge, or on
a face of some tile in P. Suppose P contains a vertex con�guration C centered
at vertex v. We �rst note that v must also be a vertex in in(P). The ination
may have changed the tiles which share v, however, producing a con�guration C 0

centered at v. In this case we say that con�guration C inates to con�guration C 0.
This �rst case essentially permutes the con�gurations surrounding existing ver-

tices. Ination also produces new vertices. The prototile inations presented in
Section 3.3.1 show that the �rst ination of a prototile never contains an interior
vertex. Thus inating P will produce new vertices only along the edges and on
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the faces of tiles in P. Of course, no vertex con�guration can be produced on the
boundary of the patch, so every edge on which a vertex con�guration is produced
will be shared by several tiles, and every such face will be adjacent to another face.
We call an interior edge of a patch an axis, and a set of tiles all of which share two
vertices and the edge between them an axis con�guration. We give vertex con�g-
urations, axis con�gurations, and face pairings the collective label interfaces. All
vertex con�gurations in in(P) must lie on one of the interfaces of P.

Consider the set I of distinct interfaces in P. Inating P produces a new set I 0
of interfaces. By the argument above, every vertex con�guration in I 0 is the result of
inating some interface in I. If I 0 = I then the ination produced no new interfaces
of any type. Thus the set I of interfaces is closed, and no subsequent ination will
produce any new interfaces.

Note that any two tiles which share a vertex are, by de�nition, members of the
same vertex con�guration. Thus for each axis con�guration X in P, there is a
vertex con�guration C (also in P) which contains X. Similarly, every face pairing
in the patch occurs as part of a vertex con�guration. Thus a description of all the
vertex con�gurations of P includes all the axis con�gurations and face pairings in
P. Hence when computing the set I we need not consider all interfaces explicitly. It
is su�cient to consider only the vertex con�gurations of P. If an ination produces
no new vertex con�gurations, then it produces no new interfaces of any type, and
thus no subsequent ination will produce any new vertex con�gurations. 2

4.2 The 22 Global Con�gurations

In the previous section we showed that we can obtain a complete list of global vertex
con�gurations by inating a tile repeatedly, inspecting the resulting patch for new
con�gurations after each ination and halting when some ination produces no new
con�gurations. In this section we present the global vertex con�gurations of the
Danzer tiling generated by this process. Table 4.2 lists the basic characteristics of
each of the global con�gurations, and pictures can be found in Appendix A. The
designation is the \formal" name of the con�guration, consisting of the number of
tiles in the con�guration and possibly a letter to ensure uniqueness. The name is
just for convenience in referring to some of the more visually distinctive con�gura-
tions. The Composition columns give the number of each type of tile used in the
con�guration. We give the total number of tiles of each type without regard to
handedness since every global con�guration contains an equal number of left- and
right-handed tiles. For instance, the Bishop (36) contains six B tiles and six b tiles.

The Tile/Level column gives the patch in which the con�guration was found.
Because the A tile has the most complex ination, in most cases the earliest oc-
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Composition Location
Designation Name A B C K Tile/Level X Y Z

8a K-octahedron 8 A2 0.425325 0.375123 0.154508
8b Sailboat 4 4 A2 0.425325 0.48738 0.118034
16 Pawn 4 8 4 A4 0.224514 0.224514 0.072949
18 6 12 A4 0.32492 0.286568 0.118034
28 8 4 12 4 A5 0.224514 0.224514 0.072949
36 Bishop 12 4 20 A3 0.425325 0.48738 0.118034
38 Claw 6 12 20 A4 0.363271 0.224514 0.072949
40a Diamond 10 10 20 A3 0.525731 0.688191 0.118034
40b 20 20 A4 0.48738 0.750245 0.072949
42 Obelisk 6 12 12 12 A5 0.32492 0.286568 0.118034
60a 10 40 10 A4 0.525731 0.688191 0.118034
60b 20 20 20 A5 0.48738 0.750245 0.072949
64 Taco 12 4 44 4 A6 0.224514 0.224514 0.072949
70 12 26 32 A5 0.363271 0.224514 0.072949
80 4 32 44 A4 0.425325 0.48738 0.118034
90a Half-discus 10 80 A5 0.525731 0.688191 0.118034
90b 30 60 A6 0.32492 0.286568 0.118034
100 Princess 20 80 A7 0.224514 0.224514 0.072949
110 Cone 10 100 A6 0.525731 0.688191 0.118034
120a B-ball 120 A5 0.425325 0.48738 0.118034
120b C-ball 120 A6 0.425325 0.48738 0.118034
120c K-ball 120 A7 0.425325 0.48738 0.118034

Table 4.1: Basic characteristics of the 22 global vertex con�gurations.
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currence of a con�guration is in some ination of an A tile. The exceptions are
con�gurations 18, 36, 64, and 100, each of which can be found one level earlier in
the ination of a C tile. For simplicity we always use an A tile as our starting
point. Finally, the three rightmost Location columns give the coordinates of the
central vertex of an instance of each con�guration within the patch indicated in the
Tile/Level column. The orientation of the original tile is as follows: vertex 1 of the
original A tile is placed at the origin, vertex 2 is on the positive x-axis, and vertex
3 is in the x-y plane. The dimensions of the starting tile are as given in Table 3.1,
and no scaling was performed between inations. When several instances of a new
con�guration appear simultaneously, one has been chosen arbitrarily.

Con�guration 120c, the K-ball, does not appear until the 7th ination of an A
tile, and not until the 8th ination of any of the other three tiles. All other con�gu-
rations can be found in less than 7 inations of some tile, and in 8 or less inations
of any tile. Thus H, the maximum number of inations absolutely necessary to
produce any vertex con�guration, is 7 for this set of tiles. This contradicts Danzer's
statement in the �rst part of his main theorem that this set has H = 6.

All the global vertex con�gurations have at least one plane of mirror symmetry.
Thus none of them are chiral; that is, each global con�guration is congruent to
its mirror image. There are three 120-tile balls, 120a, 120b, and 120c, composed
exclusively of B tiles, C tiles, and K tiles respectively. These three con�gurations
have all the symmetries of the icosahedral group. (An icosahedron has 6 axes of
�vefold rotational symmetry passing through opposite vertices, 10 axes of threefold
rotational symmetry passing through the centers of opposite faces, and 15 axes of
twofold rotation bisecting opposite edges.) In�nitely inating one of these balls
produces an in�nite tiling with full icosahedral symmetry. The three in�nite tilings
with full icosahedral symmetry mentioned in part (Icos) of Danzer's theorem are the
three tilings generated by inating each of the balls in�nitely. The unique deation
property shows that any tiling with such symmetry must be equivalent to one of
these three.

4.3 Inating a Vertex Con�guration

Inating a patch may create new internal vertices, but, because the ination of each
tile is self-contained, no vertices ever disappear as a result of an ination. That is,
any point v which is a vertex in P will be a vertex in ink(P), k � 0. The number
and types of tiles which share v, however, will change under ination. Figure 4.1
shows a graph of the e�ect of inating the 22 global vertex con�gurations. The three
balls (120a, 120b, and 120c) cycle under ination. All other vertex con�gurations
inate to the B-ball after at most four steps, except for 8a (the center of the K-
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Figure 4.1: The e�ect of ination on the 22 global vertex con�gurations.

octahedron), which is unchanged by ination. Note that part (Icos) of Danzer's
main theorem says that all con�gurations but 8a inate to one of the three balls
after at most six inations, but in fact four inations are su�cent and the entry
point into the three-ball cycle is always the B-ball.

4.4 F1 satis�es (EVC)

In Section 4.1 we assumed that the Danzer tiles satisfy (EVC), the requirement that
all global vertex con�gurations be produced by inating some prototile no more than
H times. In this section we will describe a constructive method by which we can
show that (EVC) is met. The construction is the topic of the next chapter.

The closed-set argument of Section 4.1 shows that there are in�nite tilings which
contain only the 22 con�gurations listed above. This does not guarantee that all
in�nite tilings contain only these con�gurations, however. One can imagine several
ways in which the ination graph shown in Figure 4.1 could be incomplete. Perhaps
there is a single-vertex cycle like 8a, which, though not generated in any ination
of a single tile, would remain �xed under ination if constructed. There could even
be an \alternate universe," a completely separate set of vertex con�gurations which
are closed under ination.

To show that the Danzer tiles satisfy (EVC), we must show that inating any
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initial patch P a �nite number of times produces a patch containing only the 22
global con�gurations above. As discussed in Section 4.1, it is su�cient to consider
the case of inating vertex con�gurations. All vertex con�gurations produced by
inating P wil occur on an interface of P, and the vertex con�gurations of P com-
pletely describe the other interfaces of P.

Thus we wish to show that inating any legal vertex con�guration a �nite num-
ber of times produces a patch containing only the 22 global con�gurations. The
next chapter presents an algorithm for constructing all legal vertex con�gurations,
and shows that all of them inate to one of the three balls within four steps. Thus
all in�nite tilings consist of only the 22 global con�gurations listed above, all of
which are found within seven inations of a prototile, and so the Danzer tiles satisfy
(EVC).

4.5 Distance Between Identical Patches

In Section 2.2.4 we also showed the rather surprising consequence of (EVC), local
isomorphism. Any patch in an in�nite Danzer tiling must be duplicated within a
�xed multiple  of the radius of the patch. We wish to determine an upper bound for
. Using a computational approach, we construct a bound on  and give a method
for tightening the bound. Throughout this section, when we discuss the distance
between identical patches we refer to the maximum distance from any instance of
the patch to its nearest identical copy.

Recall from Section 2.2.4 that any patch is contained in a single vertex con�g-
uration after a su�cient number of deations. Thus the distance between identical
patches is related to the distance between identical vertex con�gurations and the
orientation of the patch within the containing con�guration. Our �rst step will be
to determine the maximum distance between vertex con�gurations of the same type.

Distance Between Identical Vertex Con�gurations Rather than derive the
distance between vertex con�gurations by studying the ination mechanism, we
will show that there are a �nite number of relative orientations of two identical
con�gurations, and that we can construct and measure all of them. The local
isomorphism property, expressed in Theorem 2.2, tells us that there is an upper
bound on the distance from any vertex con�guration to its nearest identical copy.
We can view any pair of same-type con�gurations as demarcating the extent of a
patch, which is contained in a larger vertex con�guration at some level of deation.
Thus every pair of identical vertex con�gurations is contained in a patch generated
by inating a single vertex con�guration.
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These facts imply that we can construct a patch containing two maximally sep-
arated vertex con�gurations by inating a single vertex con�guration a su�cient
number of times. Since inating any tile eight times produces all vertex con�gura-
tions, inating a vertex con�guration C eight times produces all the ways in which
all con�gurations can be positioned within the ination of C. A con�guration found
in C9 can also be found in the eighth ination of some con�guration in C1. Thus we
can construct all possible relative orientations of vertex con�gurations by inating
each of the 22 global con�gurations eight times.

Our algorithm to �nd the maximum distance between identical vertex con�gu-
rations proceeds as follows. We inate a vertex con�guration eight times and locate
all vertex con�gurations within the resulting patch. For each of the 22 con�gura-
tion types, we compile a list of the locations of all its occurrences. We then apply
an all-points-nearest-neighbor algorithm to each list. The distance from one vertex
con�guration to another is measured between their central vertices.

We would like to take the maximum of the resulting distances, but �rst we must
account for boundary conditions. If a point is close to the outer boundary of the
patch then it is possible that, were the patch part of an in�nite tiling, the point
would have a neighbor outside the patch closer than any neighbor inside the patch.
This boundary e�ect could produce arti�cially large nearest-neighbor distances from
isolated instances of a con�guration in a corner of the patch. To correct for this
e�ect, we discard any point which is closer to the boundary of the patch than it
is to its nearest neighbor within the patch. We lose no information by discard-
ing these points, since any point near the boundary of one vertex con�guration is
near the center of another, and so will be included in the processing of some other
con�guration.

We compute the maximum over the nearest-neighbor distance for the points
not discarded in the boundary check. We repeat the above algorithm for each
of the global con�gurations. At this point we have 222 values: for each type of
con�guration we have 22 maxima, one from each of the 22 patches we examined.
Finally, for each con�guration C we take the max over its associated distances to
obtain the maximum distance between instances of C in the eighth ination of any
con�guration, which is the maximum in any tiling by the argument above. Table 4.2
gives thes results of this algorithm. For each of the global con�gurations we give its
radius and the maximum distance to an identical copy, measured in radii.

These measurements are approximations, but in the case of the K-ball the dis-
tance is exactly �5. The radius of the K-ball is exactly a, so the maximum distance
between K-balls is �5=a � 11:66 radii, and this is the maximum for any vertex
con�guration.
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Con�guration Radius Span Distance

8a 0.809017 1=2� 1.000
8b 0.809017 1=2� 0.764
16 0.938424 �=2 1.066
18 1.13364 1=2� 0.882
28 1.30902 1=2� 1.236
36 1.30902 1=2 0.764
38 1.48473 1=2 0.673
40a 1.24495 �=2 0.803
40b 1.30902 1=2 4.000
42 1.48473 1=2 1.090
60a 1.39272 a=� 1.880
60b 1.30902 �=2 4.000
64 1.61804 1=2 1.618
70 1.30902 �=2 1.236
80 1.30902 �=2 1.236
90a 1.61804 a 2.618
90b 1.30902 �=2 2.000
100 1.30902 �=2 3.236
110 1.24495 �=2 3.403
120a 1.53884 1 2.753
120b 1.61804 a 4.236
120c 0.951057 �=2 11.66

Table 4.2: Maximum distance from each vertex con�guration to its nearest copy, in

radii, and the span of each con�guration. � = (1 +
p
5)=2, a = (

q
10 + 2

p
5)=4.
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Embedding a Patch in a Vertex Con�guration Now that we know the dis-
tance between identical global vertex con�gurations, we are ready to consider the
distance between identical arbitrary patches. As explained in the proof of Theo-
rem 2.2, the nearest copy of a patch can be located by deating the tiling until the
patch is contained within a single vertex con�guration C, locating the nearest copy
of C, and reinating. Because ination is unique, both copies of C will produce
copies of the original patch when inated.

Lemma 2.2 shows that if the diameter of a �nite patch P contained in an in�nite
tiling T is less than the minimum vertex con�guration span of T , then P must lie
within a single vertex con�guration of T . To produce a bound on the distance from
an arbitrary patch P of a Danzer tiling to its nearest identical copy, we consider three
factors. First, we must deate the tiling until we are certain that P is contained
within a single vertex con�guration C. Second, we must determine the worst-case
distance to the nearest copy of C. Finally, we must account for the fact that the
two instances of C may not be oriented in the same direction. To simplify our
computation, we consider deation to shrink P rather than expanding the tiles of
T . That is, after a deation we increase our distance scale by a factor of � so that
the dimensions of the tiles in T remain unchanged and the diameter of P is scaled
by 1=� . The construction of a bound on  proceeds as follows:

As noted in Section 2.2.4, the span of a vertex con�guration composed of tetra-
hedral tiles is simply the shortest edge with an endpoint at the central vertex of the
con�guration, and thus Vmin for the Danzer tiles is the length of the shortest edge
of any tile. The shortest edge is K34, which has a length of 1=2� � 0:309. Thus we
must deate T until, under the metric described above, d is smaller than 1=2� . We
also note in Section 2.2.4 that the granularity of the deation contributes another
factor of � . If after k � 1 deations d is very slightly larger than Vmin, then after k
deations d will be smaller than Vmin by a factor of close to (but strictly less than)
� . Thus deating P until 1=2�2 < d � 1=2� ensures that P is contained within a
single vertex con�guration C.

Next we determine the worst-case distance to the nearest copy C 0 of C. From
Table 4.2 we see that le largest such distance is �5=a � 11:66. Finally, we consider
the possibility that C and C 0 are not oriented in the same fashion. In the worst case,
one is rotated 180 degrees with respect to the other, so that they face in exactly
opposite directions. Then the distance between corresponding points in the two
con�gurations is increased by the length of the longest edge with an endpoint at the
center of the con�guration. The longest edge of any tile is C13, which has a length
of � .

Thus if P lies entirely within C, the maximum distance to a corresponding region
in a copy of C is �5=a+ 2� . We wish to measure this distance in units of d. From
the argument above we know that d > 1=2�2. Thus we conclude that the maximum
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distance from P to its nearest copy is (�5=a + 2�)2�2 � 78:002 diameters, or twice
that many radii.

We have shown that it is possible to place a bound on . There is signi�cant
room for improvement, however. The three worst cases we mentioned above (the
smallest vertex span, the largest distance to the nearest copy of C, and the longest
edge) do not occur simultaneously. Thus to improve our estimate we compute a
bound on  for each vertex con�guration, taking into account its particular span,
nearest-neighbor distance, and longest edge. The maximum of these values is our
bound on .

Danzer states that  = 40 for this tiling. It remains unclear how he arrived at
this value. The method described above produces a value of about 46. Though our
intuition suggests that Danzer is correct, we are unable to verify his claim. Possible
methods for further tightening the bound on  are discussed in Section 6.1.



Chapter 5

Extending the Atlas

In the last chapter we discovered that there are 22 vertex con�gurations which occur
in an in�nite tiling. Examining their pro�les (see Appendix A), it seems that we
should be able to build more than these 22 without breaking any of the matching
rules. For instance, con�guration 90a (Figure A.16) looks like a C-ball with roughly
the lower third replaced by a disk of A tiles. There is no obvious reason that we could
not perform the same replacement on the top half of the ball. Though we cannot
�nd such a con�guration in a tiling, one can be constructed without violating the
matching rules.

The fact that we can build one vertex con�guration which does not appear in an
in�nite tiling suggests that there may be more (for instance, look at con�gurations
90b, 100, and 110 | the two cones of the Princess could be directly opposite one
another). A knowledge of such con�gurations could be quite useful in applying
tiling theory to quasicrystals. One of the major arguments against the aperiodic
model of quasicrystals is what mathematicians call forced tiles and chemists call
non-local e�ects: one small group of tiles can force the positions of other tiles at
arbitrarily large distances. It is unclear how atoms attaching to the surface of a
growing crystal could \know" about forcing e�ects from deep inside the crystal.
Vertex con�gurations which are locally legal but do not appear in an in�nite tiling
could represent the possible defects in a crystal that would occur if an atom were
to attach based only on its immediate surroundings. A complete list of legal vertex
con�gurations will also allow us to prove that the 22 global con�gurations discussed
in the previous chapter are in fact the only vertex con�gurations which can appear
in an in�nite Danzer tiling.

This chapter will extend the atlas of the previous chapter to include all locally le-
gal vertex con�gurations by developing an algorithm to construct them exhaustively.
The �rst two sections abstract the problem, allowing us to solve it on a discrete-

43
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valued, two-dimensional surface using a simple representation. We will then show
how one can enforce the matching rules in our system, and discuss issues of e�-
ciency. Finally, we present some rather surprising results: our algorithm found 174
locally legal con�gurations (including the 22 global ones). Part (Vert) of Danzer's
main theorem suggests that there are a total of 27 vertex con�gurations.

Our goal in the next several sections is to devise an algorithm that will construct
all possible vertex con�gurations. We will use a depth-�rst searching algorithm,
based on an approach presented by Baake et al.[BBAK+94], placing tiles around
the central vertex until we have a complete con�guration or we reach a point where
it is impossible to place a tile without violating the matching rules. A note on
terminology: in the coming sections, we will often talk about tiles and their vertices.
In this context, we do not use vertex to mean a zero-dimensional point but rather
the part of the tile contained in a ball of some small but non-zero radius centered at
that point. Thus a vertex has a shape and angles associated with it, and is subject
to the matching rules. For example, when we place B3 vertices next to each other,
we mean that we are placing B tiles together (according to the matching rules) such
that all their 3-labeled vertices coincide.

5.1 The Importance of Being Discrete

The �rst issue in designing our algorithm is the representation of tiles. There are
several di�culties associated with representing arbitrary locations of tiles in three
dimensions. One is the issue of accuracy and rounding error. Our task would be
much simpler if we could somehow limit each tile to a �nite (and hopefully small)
number of positions. We could then represent locations and adjacencies explicitly
rather than relying on di�cult computations using real-valued coordinates.

The key observation is that there is a \common divisor" of every vertex. We
concluded from the examination of the e�ects of ination on vertex con�gurations
that every con�guration, after at most four inations, inates to the B-ball (see
Figure 4.1). This means that some number of B3 vertices can be packed together
to exactly cover any vertex of any other tile. (This can also be seen by tracing the
ination of a vertex through several steps using the inations in Table 3.4). Thus
we can think of the B-ball as a �xed template upon which we can construct any
vertex con�guration. Every tile must be placed so that one of its vertices is in the
center of the B-ball and so that it overlaps completely some number of the tiles in
the B-ball. Because every tile can be placed in this manner, we lose no generality by
\justifying" the locations of tiles so that they line up with the B tiles. Any vertex
con�guration not justi�ed to the B-ball can be rotated so that it is. Figure 5.1
shows how an A tile with A1 at the center overlaps exactly three tiles on the B-ball.
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Next we wish to know exactly how many di�erent justi�ed positions a tile can
occupy. Recall from Section 4.2 that the B-ball has full icosahedral symmetry. The
icosahedral group contains 60 transformations which map the icosahedron to itself.
These transformations will be discussed in more detail in Section 5.3, but for now
we note that a tile with a particular vertex at the center of the con�guration can
occupy 60 distinct positions that are justi�ed with respect to a �xed B-ball.

5.2 Down to Two Dimensions

This last statement implies that every tetrahedron can be in 240 positions relative
to the B-ball. As an example, an A tile can occupy 60 positions when A1 is at the
center of the ball, but of course the A2 vertex has a di�erent shape and covers a
di�erent region of the B-ball when placed at the center. Thus each tile can occupy
60 positions for each of its four vertices.

This motivates a conceptual simpli�cation of the problem. Rather than thinking
of rather complex three-dimensional tiles covering parts of the B-ball, consider the
projection of the B-ball onto a sphere. That is, place a sphere around the B-ball so
that the sphere and the B-ball share the same center, and project the tiles outward
from the center onto the sphere. Each tiles casts a triangular \shadow", and we
obtain a tiling of the surface of the sphere, comprised of 120 congruent spherical
triangles. If we atten each triangle (connecting its corners with a plane rather
than a patch of a sphere), we obtain a 120-faceted polyhedron which we will call B
(Figure 5.2). Figure 5.3 is a cut-out pattern for an icosahedron with the projection
of the facets of B drawn on it.

When we place, for example, an A tile with vertex A1 at the center, we can
project it outward onto B, and its projection will completely cover some subset
of the facets of B. If instead we place A2 at the center, we get a projection that
covers a di�erent set of facets. Rather than view these sets as di�erent aspects of an
underlying three-dimensional tile, we can view them purely as separate sets of facets,
to be placed as independent two-dimensional tiles. This gives us four projections of
each of the eight tetrahedra, one from each vertex, for a total of 32 two-dimensional
tiles (or sets of facets) on the surface of B.

Each of these 32 tiles can occur in 60 positions, corresponding to the 60 icosa-
hedral symmetries. Finally, note that just as we can view di�erent projections of a
3-D tile as di�erent 2-D tiles, we can view di�erent positions of a 2-D tile as separate
tiles. Thus we now have 32 �60 = 1; 920 at tiles, each of which covers an immovable
set of facets on B.

These conceptual modi�cations simplify the problem of building a vertex con-
�guration considerably. We no longer need to be concerned about which vertex to
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Figure 5.1: A partially transparent A tile superimposed on the B-ball. Vertex 1 of
the A tile is at the center of the ball. The tiles of the B-ball have been separated
for clarity; there would normally be no gaps. Left: The three edges of the A tile
intersect the B-ball at vertices. Right: The three darker tiles in the center are
exactly covered by the A tile.

Figure 5.2: The 120-faceted ball B. Adjacent \plates" of 10 facets have been given
di�erent colors for contrast. There are 12 such plates, each centered at one of the
vertices of an icosahedron.
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Figure 5.3: A cut-out pattern for an icosahedron. The faces of the icosahedron have
been marked with the projections of the facets of B.
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place in the center or how to rotate a tile. We must simply �nd all subsets of our
1,920 tiles which cover B completely without overlapping. There remain some sig-
ni�cant di�culties to be addressed. We discuss the enforcement of matching rules
and the tractability of such a large packing problem in Section 5.4. First, however,
we will consider the representation of these tiles.

5.3 Representation

Viewing our tiles as sets of facets on the 120-faceted ball B leads to a convenient
representation. A tile T is stored as an array T0 to T119 of boolean values. If Ti is
true, then facet i is covered by the tile T . We can check whether two tiles intersect
with a bitwise AND, and whether a collection of tiles covers B with bitwise OR. We
also need to know which of the 62 vertices of B are touched by the border of the
tile. This vertex list can be stored in the same manner as the facet list. To avoid
confusion between the 62 vertices of B and the three vertices of a tile on the surface
of B, we will refer to the vertices of each tile as corners for the rest of this section.

The list of facets and vertices covered by each of the 32 basic tiles is presented
to the algorithm explicitly, and then the 60 positions of each tile are computed by
applying each of the 60 icosahedral transformations. A transformation is simply a
mapping from B 7! B, stored as an array A in which each element Ai contains the
location of facet (or vertex) i under the transformation. For example, if A6 = 50,
then when B is rotated according to this transformation, the facet that is currently
in location 6 will be in location 50.

Fortunately, we do not have to construct all of these transformation arrays man-
ually, for the following reason. An icosahedron has six axes of �vefold rotational
symmetry passing through opposite vertices (white axes), 10 axes of threefold rota-
tional symmetry passing through the centers of opposite faces (green axes), and 15
axes of twofold rotation bisecting opposite edges (red axes). The three basic trans-
formations which map the icosahedron to itself are rotation by 72� about a white
axis, rotation by 120� about a green axis, and rotation by 180� about a red axis.
All other icosahedral symmetries are equivalent to the composition of a number of
these three elemental transformations. Thus we choose an arbitrary numbering for
the facets (the identity transformation), explicitly compute facet and vertex map-
pings for the three basic transformations, and then construct the remaining 56 by
composition.

Thus our �nal representation of each tile is a 120-element array denoting the
covered facets of B and a 62-element array denoting the vertices of B which lie
along the boundary of the tile. There are 1,920 such pairs of arrays, each pair
corresponding to one tetrahedron with a particular vertex placed at the center of
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the con�guration, occupying a particular location with respect to the B-ball.
We maintain two global arrays which represent the facets and vertices of B, in

which store keep the union of all tiles we have placed so far. As we will see in the
next section, this allows us to easily verify whether a tile about to be placed will
conict with any portion of the partially assembled vertex con�guration.

5.4 Enforcing the Matching Rules

Our algorithm for constructing a vertex con�guration will be based on a recursive
depth-�rst search. We are given some portion of the con�guration which has already
been constructed in the global arrays representing B. Since every outer edge of this
patch must be matched eventually, we pick one edge arbitrarily to be the site of the
next placement. Then for each tile that can be placed adjacent to the chosen edge
without a conict, we place the tile, recurse, and then remove the tile. After each
placement we check whether all the facets of B have been covered; if so, we have
a complete vertex con�guration. To determine whether the con�guration we have
constructed is actually new, we compare it under all 60 transformations to each
con�guration we have already found. If it is not congruent to any of them, then we
add it to the list of con�gurations found.

The key phrase in the paragraph above is \without a conict." We must ensure
that the three-dimensional vertex con�guration represented by the tiling of the sur-
face of B is face-to-face and obeys the matching rules for the Danzer tiles. We must
also reduce the branching factor at each level of recursion if the algorithm is to be
computationally tractable.

We can accomplish several of these goals using the vertex classes (or colors)
described in Section 3.5. Recall that for each of the 1,920 �xed tiles we have an
array denoting which of the vertices of B are on the boundary of the tile. Rather
than using simple boolean values for these marks, we assign each vertex one of six
colors. A color of black indicates that the vertex is not on the boundary of the tile,
and grey indicates that a vertex is on an edge of the tile but is not a corner. The
remaining four colors (red, green, blue, and yellow) are reserved for the vertices of
B which coincide with corners of the tile and indicate the class of the vertex of the
corresponding tetrahedron.

When considering a tile for placement, we require that the non-black vertex
colors of the tile match the colors of the corresponding vertices of B, with the
understanding that an unassigned vertex on B will match anything placed upon it.
The use of a separate color for vertices along the edge of a tile ensures that we will
only place tiles edge-to-edge, since the color of a corner will never match the color
of a point in the middle of an edge.
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It should be noted that these restrictions alone are su�cient to make the problem
tractable. The branching factor at each level, while still signi�cant, is su�ciently
limited by choosing only tiles that lie along a particular edge of the existing patch
and that have corners of the appropriate color. This version of the algorithm com-
pleted in about 14 hours on an SGI Indigo2.

Unfortunately, while vertex color has the feature that the two-dimensional tiles
will be placed edge-to-edge, it is not su�cient to completely enforce the matching
rules. The projection of a tetrahedron onto B (the shape of one of the 32 basic at
tiles) is determined only by the angles at the central vertex, not by the shapes of
its faces or the lengths of its edges. There are a number of faces of the tetrahedra
which have the same projection onto B and the same vertex colors, but which are not
congruent. This algorithm produced almost 500 vertex con�gurations, the majority
of which were illegal.

To prevent some of the illegal pairings allowed by the algorithm, we also carry
a length value with each vertex, which represents the point's distance from the
center of the con�guration, and we require that these match in the same manner
as the vertex colors. This guarantees that the two adjacent three-dimensional faces
represented by adjacent edges on the surface of B will be congruent. This further
restriction reduced the running time to roughly 8 hours and the output to 268
con�gurations, but still allowed some illegal pairings. For example, the C2 face
is isosceles and the two vertices of the base, C1 and C3, are the same color (blue).
Thus two right-handed C tiles pointing in opposite directions can be placed together
to form a �ve-sided pyramid whose base is a parallelogram, a pairing which is not
allowed under the matching rules for the Danzer tiles but which does not violate
the color or length restrictions above.

The �nal step in enforcing the matching rules makes use of the fact that the
Danzer tiles always form octahedra, as described in Section 3.4. Essentially, we
are taking into account the most local forcing e�ects. During the placement of
a tile, if we know that there is only one tile that can be placed adjacent to one
of its edges, then we immediately place that tile rather than waiting until a later
level of recursion. An octahedron formed from four tetrahedra sharing a central
edge has two vertices at which all four tetrahedra meet (the endpoints of the central
axis) and four vertices at which two tetrahedra meet. Thus depending on which two-
dimensional tile we are placing (that is, which vertex of the tetrahedron it represents
is at the center of the con�guration), we can always place either two or four tiles at
a time in this manner. Rather than implementing this as separate tile placements,
we create a set of \meta-tiles," each of which is the union of two or four of the 32
basic two-dimensional tiles. We then seek to cover B with these meta-tiles. This
modi�cation does not discard any generality; every meta-tile is a pair or quadruple
of tiles that must always be placed together. We simply avoid determining this fact
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anew each time a tile is placed.
The combination of vertex color, length matching, and meta-tiles is su�cient

to completely enforce the matching conditions (the algorithm produced no illegal
vertex con�gurations). The meta-tiles also greatly reduce both the branching factor
and the depth of the recursion, reducing the running time of our implementation
from over 8 hours to 2 minutes and 40 seconds. The results of the execution of this
algorithm are presented in the next section.

5.5 Results

The results of running the algorithm described above were rather surprising. We
found 174 vertex con�gurations, including the 22 global con�gurations. This is in
contrast to part (Vert) of Danzer's main theorem, which claims that there are
exactly 27 con�gurations.

The 152 new con�gurations fall into three major groups. Group 1 has 21 mem-
bers which are similar to global con�gurations 60b, 70, 80, 90b, 100, and 110 and
the new con�guration 100n. They are formed by replacing parts of a K-ball with
cones of B tiles and clusters of four A tiles. Group 2 has 121 members, all based on a
single replacement. Six A tiles can be placed so that they meet on faces 1 and 2 and
share the A34 edge, forming a 6-tile \divot" which can be substituted for 12 B tiles
on the B-ball in any of twenty di�erent locations. Up to eight such replacements
can be made simultaneously. The remaining ten vertex con�gurations are largely
distinctive. Appendix B contains pictures of the distinctive new con�gurations and
a representative from each of the other two groups, and Table 5.1 gives some of their
characteristics. Figure 5.4 shows the e�ects of ination on all vertex con�gurations.

The new con�gurations have a number of interesting characteristics, which we
list below in no particular order:

� All of the 22 global con�gurations have at least one plane of mirror symmetry.
In contrast, con�gurations 40na and 40nb are completely asymmetrical, and
are mirror images of each other.

� Con�guration 44n is the only con�guration to use two di�erent vertices of the
same type of tile at its center. Of the 20 C tiles it contains, eight have C1 at the
center and twelve have C3 at the center. Thus this is the only con�guration
(besides the K-octahedron) in which all the members of a vertex class are
present (see Section 3.5).

� 48n and 54n are variations on the globally occurring 60a, produced by the
same replacement which gives rise to the Group 2 con�gurations.
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Composition
Designation Name A B C K

36n Shuriken 12 24
38n 6 12 20
40na 20 20
40nb 20 20
44n Snowplow 6 6 20 12
48n 22 16 10
50n Torch 10 40
54n 16 28 10
60n Discus 20 40
100n Prince 20 80
Group 1 4-24 10-26 20-84
Group 2 6-48 24-108

Table 5.1: Basic characteristics of the ten distinctive new con�gurations and ranges
for the members of the other two groups.
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Figure 5.4: The e�ect of ination on all vertex con�gurations. The new con�gura-
tions are drawn as rounded rectangles.
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� 60n is a natural extension of 90a, replacing both sides of the C-ball with
medallions of ten A tiles.

� 100n is a variation on con�guration 100 (the Princess), and is part of the same
class of modi�cations to the K-ball as 60b, 70, 80, 90, 100, 110, and all the
members of Group 1.

� 36n, 38n, and 44n contain the face pairing B3�C3, which does not appear in
a global tiling because it cannot be extended (see Section 3.2). The divot of 6
A tiles used in 48n, 54n, and all the members of Group 2 contains the A1�a1
pairing, which also cannot be extended.

� All the new con�gurations except those in Group 2 become the B-ball after
no more than four inations, as do the global con�gurations. The Group 2
con�gurations all become the C-ball after one ination. They are the only
con�gurations which inate to a ball other than the B-ball.



Chapter 6

Conclusion

Our work has focused primarily on the vertex con�gurations of the Danzer tiling. We
have produced an atlas of all legal vertex con�gurations, and identi�ed those which
occur in an in�nite tiling. We have provided an elucidation of the paper in which
Danzer �rst presented his tiles, and have produced proofs for the majority of his
conclusions. We have given a method of computing the local isomorphism constant
. Finally, we have extended and re�ned a library of tools for computationally
investigating and visualizing Danzer tilings.

The atlas of vertex con�gurations is useful for a number of reasons. We may wish
to use the Danzer tiling as a model for the atomic structure of a quasicrystal. In
this case, the vertex con�gurations represent the immediate neighborhoods around
atoms. The non-global con�gurations could correspond to defects in the crystal,
an important concern given the questions surrounding the incremental formation of
quasicrystals.

From a more theoretical point of view, the atlas provides insight into the struc-
ture of the tiling as a whole. In the study of the Penrose tiling, vertex con�gurations
are critical to the understanding of the locations of the Ammann bars and the tiles
forced by a patch. We hypothesize that there are Ammann planes in the Danzer
tiling. If they exist, then a understanding of the global vertex con�gurations will
certainly be necessary in determining their locations and the manner in which they
force tiles.

We invested a signi�cant amount of work into proving the theorems and con-
clusions presented in Danzer's paper. A clearer explication of the construction and
properties of these tiles is a valuable resource for future research. The proofs them-
selves often turned out to be surprisingly complex, and led to results that were not
stated in Danzer's paper. Properties of a tiling such as the �xed density of tiles and
local isomorphism are subtle, and the process of proving them facilitated a deeper
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understanding of the tiling. The method of bounding , for instance, grew out of
the general proof of local isomorphism. In the course of tracing Danzer's steps, we
have re�ned or corrected several of his results:

� Danzer states that H = 6. Con�guration 120c, the K-ball, is not found until
the 7th ination of any prototile, and thus the Danzer tiling has H = 7.

� Though Danzer states that every vertex con�guration except theK-octahedron
inates to one of the three 120-tile balls within six inations, only four ina-
tions are necessary.

� There are 174 legal vertex con�gurations. Danzer states that there are 27.

We have laid the groundwork for a tighter bound on the value of , a constant
which is critical to the structure of the tiling. The constructive method of proof is
particularly interesting because it might be applicable to other tilings which obey
ination and deation rules.

Finally, we have built tools which allow us to construct, visualize, and study
Danzer tilings computationally. These tools have been invaluable in our work, and
they provide important and useful methods of both con�rming hypotheses about the
tiling and actually proving results, as in the constructive proof of the completeness
of the global atlas.

6.1 Future work

There remain many unanswered questions relating to the Danzer tiling. The most
tractable of these, we believe, is improving the bound on . In Section 4.5 we ac-
counted for di�erent orientations of nearest-neighbor vertex con�gurations by adding
twice the length of the longest edge to the distance between their centers. It seems
likely that this term is much larger than necessary. We suspect that in the worst
case the distance between the centers of two identical patches will be the distance
between their containing con�gurations plus twice the radius of the patch. This
leads us to the following conjecture:

Conjecture:  < 28 for the Danzer tiling.

This value for  is based on a worst-case distance between vertex con�gurations
which we suspect may be due to a rounding error in the distance computation. Thus
we conjecture, with slightly less con�dence than previously, the following:
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Conjecture:  � 18 for the Danzer tiling.

In the case of the �rst conjecture, the computed value for  was rounded up to
28. In the second conjecture, however, 18 is a precise value. It is possible that in
fact  = 18 is a tight bound. That is, it may be possible to locate a patch whose
nearest duplicate is arbitrarily close to 18 radii away. Proof of this claim would
require a much deeper and more subtle analysis of the problem than we have given,
however.

Besides more tightly bounding the distance between identical patches, there are
a number of other interesting questions which open avenues for future work:

� Can the constructive method of determining a bound on  be applied to other
tilings? In particular, the theoretical bound on  for the Penrose tiling is much
larger than the observed bound. Can we tighten the bound for the Penrose
tiling?

� It could be useful to build a computational tool for measuring the distance
from an arbitrary patch to its nearest copy. Is the observed bound on  in the
Danzer tiling less than the provable bound, as in the Penrose tiling?

� Are there Ammann planes in the Danzer tiling, and if so, where do they lie?
What are the empires of the vertex con�gurations?

� Can we extend the algorithm presented in Chapter 5 to produce second-order
vertex con�gurations (that is, patches containing all tiles adjacent to a vertex
con�guration)?

� Corollary 2.2 shows that the relative frequency of each prototile is non-zero.
This implies that in the ination matrix M, the ratio of an element to the
sum of its column is non-zero for all powers ofM. This prompts the following
conjecture:

Conjecture: LetM be an n�n matrix containing only positive entries. Then

lim
k!1

Mk
i;jPn

c=1Mk
c;j

exists, is non-zero, and is the same for all 1 � i; j � n.

That is, the ratio of an element to the sum of its column converges to a non-
zero limit when anyM containing no zeros is raised to arbitrarily large powers,
and that limit is the same in each column.

A related question is whether any square matrix M such that some power of
M contains no zero entries could be the ination matrix for some tiling.



Appendix A

Global Vertex Con�gurations

This appendix presents pictures of the 22 global vertex con�gurations. The pictures
were rendered on a Silicon Graphics Indigo2 using powerip, a demo shipped with
the operating system. A tiles are drawn in red, B tiles in green, C tiles in blue,
and K tiles in yellow. In these pictures, no distinction is made between left- and
right-handed tiles. Each tile has been shrunk by 30% toward its center of mass to
allow us to see inside the con�guration. While each individual image is an accurate
rendering, scales are not the same between �gures or between images within a �gure.
Figure A.23 shows all the con�gurations drawn to scale.

The caption for each �gure gives how many of each prototile are used in the
con�guration, and the number of the central vertex. Every con�guration has an
equal number of left- and right-handed tiles, so for brevity we combine them. For
example, 4 �K3 means that the con�guration contains two K tiles and two k tiles,
and that for all four of those tiles vertex 3 is in the middle of the con�guration.

Although we show several views for each con�guration, it is always di�cult
to infer three-dimensional structure from at pictures. The data �les containing
the locations of the tetrahedra are available in powerip, POV, and raw formats
at http://www.cs.williams.edu/tiling/ for those readers interested in viewing these
objects more dynamically.
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Figure A.1: Con�guration 8a, the K-octahedron. Composition: 8 �K4.

Figure A.2: Con�guration 8b, the Sailboat. Composition: 4 �B4, 4 �K3.

Figure A.3: Con�guration 16, the Pawn. Composition: 4 � A4, 8 � C4, 4 �K2.
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Figure A.4: Con�guration 18. Composition: 6 � C2, 12 �K3.

Figure A.5: Con�guration 28. Composition: 8 �A3, 4 � B3, 12 � C2, 4 �K3.
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Figure A.6: Con�guration 36, the Bishop. Composition: 12 �B1, 4 � C1, 20 �K1.

Figure A.7: Con�guration 38, the Claw. Composition: 6 � B1, 12 � C1, 20 �K1.
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Figure A.8: Con�guration 40a, the Diamond. Composition: 10 �B2, 10 �C4, 20 �K2.

Figure A.9: Con�guration 40b. Composition: 20 � C1, 20 �K1.
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Figure A.10: Con�guration 42, the Obelisk. Composition: 6 � A2, 12 � B1, 12 � C3,
12 �K1.

Figure A.11: Con�guration 60a. Composition: 10 �A3, 40 �B3, 10 � C2.
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Figure A.12: Con�guration 60b. Composition: 20 � A1, 20 � B2, 20 �K2.

Figure A.13: Con�guration 64, the Taco. Composition: 12 �A2, 4 �B1, 44 �C3, 4 �K1.
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Figure A.14: Con�guration 70. Composition: 12 � A1, 26 �B2, 32 �K2.

Figure A.15: Con�guration 80. Composition: 4 � A1, 32 � B2, 44 �K2.
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Figure A.16: Con�guration 90a, the Half-discus. Composition: 10 �A2, 80 � C3.

Figure A.17: Con�guration 90b. Composition: 30 � B2, 50 �K2.



APPENDIX A. GLOBAL VERTEX CONFIGURATIONS 66

Figure A.18: Con�guration 100, the Princess. Composition: 20 �B2, 80 �K2.

Figure A.19: Con�guration 110, the Cone. Composition: 10 � B2, 100 �K2.

Figure A.20: Con�guration 120a, the B-ball. Composition: 120 �B3.
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Figure A.21: Con�guration 120b, the C-ball. Composition: 120 � C3.

Figure A.22: Con�guration 120c, the K-ball. Composition: 120 �K2.
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Figure A.23: All 22 global con�gurations drawn to scale.
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New Vertex Con�gurations

This appendix contains pictures of the non-global vertex con�gurations constructed
by the algorithm described in Chapter 5. There are 152 arti�cial con�gurations,
which fall into three major groups. Two of the groups, containing 21 and 121
members, consist of many similar vertex con�gurations resulting from permutations
of a few local replacements. We give pictures of one representative from each of
these groups. The remaining 10 con�gurations are distinctive, and we give pictures
of all of them.

The pictures were rendered on a Silicon Graphics Indigo2 using powerip, a
demo shipped with the operating system. A tiles are drawn in red, B tiles in green,
C tiles in blue, and K tiles in yellow. In these pictures, left-handed tiles are shaded
darker than their right-handed counterparts. Each tile has been shrunk by 30%
toward its center of mass to allow us to see inside the con�guration. While each
individual image is an accurate rendering, scales are not the same between �gures
or between images within a �gure. Figure B.13 shows all the con�gurations drawn
to scale.

The caption for each �gure gives how many of each prototile are used in the
con�guration, and the number of the central vertex. Every con�guration has an
equal number of left- and right-handed tiles, so for brevity we combine them. For
example, 4 �K3 means that the con�guration contains two K tiles and two k tiles,
and that for all four of those tiles vertex 3 is in the middle of the con�guration.

The data �les used to generate these pictures are available in powerip, POV,
and raw formats at http://www.cs.williams.edu/tiling/ for those readers interested
in viewing these objects more dynamically.
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Figure B.1: Con�guration 36n, the Shuriken. Composition: 12�B1, 20�C1. Contains
the B3� C3 face pairing, and so cannot be extended (see Section 3.2).

Figure B.2: Con�guration 38n. Composition: 6 � B1, 12 � C1, 20 �K1. Contains the
B3� C3 face pairing, and so cannot be extended.
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Figure B.3: Con�guration 40na. Composition: 20 � C1, 20 � K1. Has no plane of
symmetry; mirror image of 40nb.

Figure B.4: Con�guration 40nb. Composition: 20 � C1, 20 � K1. Has no plane of
symmetry; mirror image of 40na.
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Figure B.5: Con�guration 44n, the Snowplow. Composition: 6 � A2, 6 � B1, 8 � C1,
12 � C3, 12 � K1. The only con�guration to use two di�erent vertices of one type
of tile (C1 and C3), and thus the only con�guration besides 8a to contain all the
members of its vertex class. Contains face pairing B3�C3, so cannot be extended.
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Figure B.6: Con�guration 48n. Composition: 22 �A3, 16 �B3, 10 �C2. A modi�cation
of 60a with two of the same replacements used to form Group 2. Contains the A1�a1
face pairing, so cannot be extended.

Figure B.7: Con�guration 50n, the Torch. Composition: 10 � C4, 40 �K2.
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Figure B.8: Con�guration 54n. Composition: 16 �A3, 28 �B3, 10 �C2. A modi�cation
of 60a with 12 B tiles replaced by one divot of 6 A tiles. Contains the face pairing
A1� a1, so cannot be extended.

Figure B.9: Con�guration 60n, the Discus. Composition: 20 �A2, 40 �C3. A natural
extension of con�guration 90a.

Figure B.10: Con�guration 100n, the Prince. Composition: 20 � B2, 80 � K2. A
modi�cation of the Princess, con�guration 100.
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Figure B.11: Group 1 representative, one of 21. See global con�gurations 60b, 70,
80, 90b, 100, and 110 for other examples of this class of con�gurations.

Figure B.12: Group 2 representative, one of 121. Formed by replacing groups of 12
B tiles in the B-ball with divots of 6 A tiles. The divot cannot be extended, so no
Group 2 con�guration can be embedded in a tiling.



APPENDIX B. NEW VERTEX CONFIGURATIONS 76

Figure B.13: The 10 distinctive new con�gurations and a representative from each
of the other groups drawn to scale. Left to right, top to bottom, they are: 36n, 38n,
40na, 40nb, 44n, 48n, 50n, 54n, 60n, 100n, Group 1, Group 2.
The scale is the same as in Figure A.23. The group representatives are not the same
as those in Figures B.11 and B.12.
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