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Abstract

Today, almost all software uses dynamic memory allocation. In some pro-
gramming languages, it is impossible to even write “Hello World!” without
implicitly calling the allocator. However, the costs of dynamic memory al-
location on cache performance are relatively unstudied. This thesis explores
the effects of dynamic memory allocation on cache performance, as well as
methods to make memory allocators cache-conscious.

We use profiling techniques to build custom memory allocators. These
allocators contain statically generated memory layouts that arrange mem-
ory in a cache-conscious manner for previously analyzed workloads. Using
a variety of techniques to build memory layouts, we demonstrate that such
layouts can dramatically affect program speed and cache miss rate. We find
that some layout strategies speed up certain programs by as much as 28%
while others cause certain programs to run up to 2.6 times slower. Addition-
ally, we provide an open source foundation which is fully compatible with all

standard C allocation functions in order to aid future research
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Chapter 1
Introduction

Cache memory is vital to achieving high performance in modern architec-
tures. Memory accesses are frequent and miss penalties are high. Using the
twin concepts of spacial and temporal locality, caches keep ever faster CPU’s
supplied with data and instructions. However, the past decade of program-
ming language evolution has drastically changed the layout of program data
in memory. Gone are the days when predictable array accesses were typical.
Ever growing data structure complexity and increased reliance on dynam-
ically allocated memory have conspired to scatter related data throughout
the address space. Linked data structures now rule the bus.

A walk through those pointer connected structures meanders through the
address space, trashing a cache. Worse, if mapped to addresses that conflict
in the cache, contemporaneously accessed structures can force each other out
of the cache.

However, the data access patterns that were obscured with the dominance
of linked data structures still exist. The patterns are extremely difficult for a
compiler to deduce statically on its own; however, researchers are exploring
a variety of techniques for using other available information to predict and
optimize for contemporaneous accesses.

Information can be gathered from the programmer, from the source code,



and from the running program itself. Each method comes with its own costs
and benefits. Extracting information from the programmer often takes pre-
cious time. Extracting information from the source or profiling can be done
automatically; however, this adds complexity to the build process. Program-
mers may have knowledge about algorithms that are not discernible from the
source or the execution. On the other hand, a computer is tireless and pre-
cise. Additionally, profiling is the only method that has full knowledge about
machine level execution. The information gained from automatic strategies
can, in turn, be leveraged to improve performance in several ways.

One approach, prefetching, works around the unpredictable layout of
linked structures. It uses knowledge to anticipate accesses and preload mem-
ory. This can be done at both the hardware and software level and can be
transparent to the programmer.

Another approach attempts to lay out memory in a cache-friendly fashion.
That is, it tries to arrange memory so that despite the linked nature of
the structures, the accesses ultimately follow patterns similar to those for
arrays. This approach can be broken down further into techniques that
order data within memory blocks and techniques that arrange the memory
blocks in the address space. The success of each approach varies depending
on programming language features.

Our research investigates linked structure layout within memory. Linked
structures are typically built using a dynamic memory allocator. In C the
standard dynamic allocator is malloc(), a function that programmers must
explicitly invoke. In other languages the allocation can happen implicitly,
using C’s malloc() or their own custom allocator.

In this thesis, we study methods of gathering memory access information
and use it to build dynamic allocators that lay out memory in a cache-optimal
fashion. We demonstrate that memory layouts can effect program speed
and cache miss rates. In addition, we investigate a wide variety of simple

layout strategies. Each strategy has different effects on the cache performance



of the program. We document features that make for a successful and an
unsuccessful layout, and we attempt to draw conclusions about the effects of

our placement strategies.



Chapter 2
Background

The study of dynamic memory allocation on cache performance is relatively
new. However, the fields of cache performance and memory allocation have

each been thoroughly explored.

2.1 Cache Use

Cache performance is a major concern in modern architectures. Jeffery
Gee and Mark Hill[10] suggest that benchmark systems like SPEC’92 often
severely underestimate the importance of cache to improving performance.
They found that misses for a single data cache were significantly lower in
SPEC’92 than in real world work loads, suggesting that good caching strate-
gies are essential to achieving better performance for real world programs.
Additionally, evidence shows that programs written in an object-oriented
paradigm have worse performance than programs written in traditional pro-
cedural styles. For instance, Calder, Grunwald, and Zorn[6] document a
number of differences between C and C++ programs. In their study of data
cache miss rates, they found a 2.43% mean miss rate for C programs and a
2.48% mean miss rate for C++ programs. However, the mean miss rate for

C++ programs written in an object-oriented fashion was 5.08%, over twice
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that of the non-object-oriented programs.

Rule of Thumb 1:

Object-oriented programming degrades cache performance.

Combined, these two observations present a problem. Modern program-
ming languages and styles are generating more cache misses and preventing

systems from achieving their full performance.

2.2 Prefetching

Prefetching is one technique used to reduce data cache misses. Its funda-
mental goal is to anticipate memory accesses and preload them into cache.
This is very easy for traditional linear access patterns. However, in order for
this strategy to be successful for linked structures, the hardware and software
need to understand the relationships between linked structures. Dependence
based prefetching can have dramatic effects on cache performance, as demon-
strated by Roth, Moshovos, and Sohi[16]. Hardware engines can be built that
observe access patterns and predicts pointer loads are starting to become
available. These engines then prefetch the pointer destinations that follow
the traversal pattern. This helps prevent cache misses for linked structures.
They found that when using one of these engines they could load struc-
tures well ahead of time for better performance using jump pointers. Jump
pointers link structures that are several traversal iterations apart ensuring
that the hardware prefetcher has enough information to load structures far
enough in advance. Their dependence-based prefetching system produced a
10% speedup using a 1 kilobyte prefetch buffer. Prefetching can also be done
in software, although it is more complex and typically requires the compiler
to understand program behavior in order to insert prefetching instructions

into the compiled code.
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Dependence-based prefetching provides a significant speed increase. How-
ever, it accepts the notion that linked data structures must be scattered
throughout memory. To solve this problem engineers add additional hard-
ware or software complexity. Could similar gains be observed by changing the
way linked data structures are organized to better suit conventional caching

strategies?” We believe so.

2.3 Structure Layout

One approach to organizing memory in a cache-conscious fashion is to re-
arrange fields within data structures. Programmers often describe the struc-
tures with little thought to internal layout. They certainly do not arrange
fields in a cache-conscious fashion. Some researchers have studied speedups
obtained by internally rearranging structures using information gathered
about access patterns.

Panda, Semeria, and di Micheli[15] studied this strategy, applying it to
data structures that contain both arrays and field structures. Their ability to
rearrange the data stems from the fact that a structure of arrays or an array
of structures are fundamentally equivalent; however, they are laid out very
differently. In large structures composed of a variety of both arrays and field
structures, there exists a multitude of possible arrangements. For example,
one might have a single structure containing multiple arrays of values or a
single array containing structures with multiple values. Based on the pro-
gram’s access patterns one of these layouts might have fewer cache misses. As
the number of possibilities increases with nested data structure complexity,
so does the possibility of one layout performing better than another. Their
algorithm seeks to find a cache-optimal layout and change the program’s in-
ternal representation accordingly. It does this by analyzing accesses within
the inner most loops of a programs. Since these accesses are relatively se-

quential, arranging them contiguously increases locality. This technique is
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especially useful for embedded systems that are compiled together in their
entirety, giving these tools maximum freedom to implement the appropriate
changes.

Chilimbi, Hill, and Larus[8] use clustering, coloring, pointer elimination,
and hot/cold splitting to help avoid cache misses when traversing linked
data structures. Clustering moves fields accessed contemporaneously near
each other, hopefully placing them in the same cache block. Coloring lays
out data so that the most important fields in each structure do not conflict
with each other, and so that the less important data will not force the most
important elements out of the cache. Pointer elimination changes code to use
precalculated offsets instead of pointers. Hot/cold splitting breaks structures
into a small block which is accessed frequently and a larger block that is
accessed less frequently. The hot blocks can then be arranged for best cache
performance. Like Panda, Chilimbi provide automated tools that manipulate
structure definitions.

The success of rearranging structures depends heavily upon the program-
ming language. In C for instance, linking issues make reordering very diffi-
cult. Libraries are built with one structure definition. Changing that struc-
ture’s layout later requires recompilation of all programs built upon that
library. In dynamic languages, there is a great potential to perform such
optimizations automatically. However, both static and dynamic languages
could benefit from a system that placed the dynamic memory allocations
in a cache-conscious manner. Since dynamic allocation happens a priori at

runtime, such as system is very flexible.

2.4 Dynamic Memory Allocation

The techniques used to allocate memory vary greatly. The simplest allocator
issues an sbrk() system call. The sbrk() function increases the size of a

process’s data segment and returns a pointer for the new memory. A simple
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allocator can ignore calls to free() and can always allocate new memory.
Such a system would allocate very quickly. But it would waste large amounts
of memory.

In reality, allocation schemes are more complex due to the necessity of
reusing freed memory. A variety of algorithms are used, including First-
Fit, BestFit, QuickFit, and segregated storage[12]. Many real allocators are
hybrids, following different strategies depending on the requested object’s
size. Real world allocators include the BSD Kingsley allocator[12] or GNU’s
modified version of Doug Lea’s[14] allocator. Each of these implementations
makes different tradeoffs regarding allocation speed and memory usage. The
traditional BSD allocator is known to be fast and memory inefficient, while
the GNU allocator is considered slightly slower, but reduces memory usage
dramatically.

Additionally, Grunwald, Zorn, and Henderson[12] have studied methods
for minimizing the cache impact of allocation. They found that certain allo-
cation schemes traverse large quantities of memory, knocking the program’s
data out of the cache. QuickFit seems to have the least impact on the cache

because it uses size hashed bins to avoid traversal.

2.5 Custom Memory Allocation

Not all programmers are satisfied with the system provided allocator. They
write custom allocators to leverage knowledge about their application’s mem-
ory allocation patterns for better allocator performance. However, studies
have shown this is often unproductive[4].

There are certain situations where custom allocators can provide a sig-
nificant performance boost. The greatest gains are observed when allocation
sizes are highly regular or memory is allocated and freed in groups called
TEGLONS.

There are disadvantages to custom allocators as well. Such custom al-
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locators are not only error prone, but also require that a memory alloca-
tion pattern exist within the program that can be exploited for performance
gains[4]. Additionally, the programmer must understand these patterns in
order to code the custom allocator.

One solution was proposed by Berger, Zorn, and McKinley[3]. Their
system, Heap Layers, provides a library that allows programmers to easily
create a variety of allocators and compose them into a single high performing
allocator. Heap Layers uses inheritance to make optimal use of programmer
domain knowledge while requiring minimal programmer effort.

Other research explores automatically generating custom allocators. Grun-
wald and Zorn’s[11] CustoMalloc profiles an application, then synthesizes an
allocator using information gathered about allocation patterns. CustoMalloc
builds fast paths for the most frequent allocation patterns. They demon-
strated that their custom-built allocators were faster than existing general-
purpose allocators. It is unclear if this is still the case as general-purpose
allocators may have gained speed in recent years. Additionally, CustoMalloc
only speeds up the allocation process. It cannot improve the performance of
code using dynamic memory. Allocation only happens once per structure,
but structures may be accessed many times.

Barret and Zorn[2] investigated another trace-based approach. Instead of
optimizing the allocator for the frequency of size requests, they created a tool
to build allocators that optimize based on object lifetime. It profiles a single
run of an application and builds a database that reflects correlations between
object lifetime and a combination of object size and call stack depth at
allocation time. Their specialized allocator then uses this database to allocate
short and long lived objects from different areas. The result is that that
short-lived objects can be recycled with little effort, improving performance.

Custom allocation can be a useful tool when the speed of allocation is
a concern. However, as illustrated by these systems, building a custom al-

location requires additional program information. It is still not clear what
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means for gathering this information is optimal. The best answer is a mech-
anism which requires the least programmer effort while still gathering the
most useful information. Automatic tools are a possible solution, but only if

they can be made transparent to the programmer.

2.6 Garbage Collection

Like object orientation, garbage collection is becoming more and more com-
mon in programming languages. There are a variety of techniques that
garbage collectors can use to account for and collect unused memory. Col-
lectors seldom rely on one technique and tend to use hybrid approaches. Hy-
brid collectors allow the best features of different methods to be combined
into one system. Modern systems typically utilize copying garbage collectors
with generational techniques and special extensions to handle large object
areas[17].

Since copying collectors necessarily rearrange memory, there is an oppor-
tunity for collectors to arrange memory so that contemporaneously accessed
objects are located near each other. This takes advantage of cache prefetch-
ing and helps avoid cache conflicts. In addition, when garbage collection is
part of a virtual machine, there is the ability to gather runtime statistics
which can be used along side a layout engine for maximum cache efficiency.
Hardware assisted garbage collection techniques could make this even easier
with the proper support. This field is very promising as it comes with little
additional cost over standard garbage collection and can be done transpar-

ently to the user.

2.7 Cache-Conscious Memory Allocation

Optimal caching seems to be crucial for performance in modern systems.

Additionally, memory reordering at the structure level has demonstrated
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increased cache hit rates[15]. Finally, memory allocators have the unique
ability to arrange structure blocks within the address space. Could a cache-
conscious dynamic memory allocator provide a performance increase?

Chilimbi, Larus, and Hall[7] set out to answer this question. They cre-
ated two cache-conscious memory placement functions. The first is an al-
locator called ccmalloc(). It requires that the programmer supply infor-
mation about access patterns. Each call to ccmalloc() takes not only the
size of the request, but also the address of an existing data structure that
will be accessed at similar times to the new structure. The other function,
called ccmorph(), actually restructures trees in memory for optimal access
speed. Programmers pass ccmorph() a tree root, a traversal function, and
information about the cache. Using this information ccmorph() attempts
to arrange the tree contiguously in memory. Because ccmorph() changes
pointers, its safety cannot be guaranteed like ccmalloc(); however, as long
as the programmer follows the interface procedures, the information that
ccmorph() can gather during run time can result in significant speed ups.
The ccmorph() functions is well-suited for languages that do not allow ar-
bitrary memory access. The ccmalloc() function, however, is a relatively
unintrusive option that can be used in almost all situations. It requires only
a moment for a programmer to consider which other structures will be ac-
cessed concurrently when coding a new allocation. Unfortunately, there are
no guarantees that a programmer understands the machine-level implications
of the code. An ideal solution would still provide the 28-138% performance
increase over hardware prefetching that ccmalloc() provides[7], while au-
tomatically gathering access information using tracing techniques similar to
those used to build custom allocators.

Calder et al.[5] began to investigate this possibility using profiling to
understand object relationships and memory accesses. They use stack infor-
mation to uniquely label objects. Their dynamic allocator then uses these

labels to map the most heavily used objects into bins with contemporane-
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ously accessed objects. This technique combined with their other tools has
reduced cache data misses by 24%. However, because their allocator it is

part of a much larger system, it is not useful as a stand alone tool.

2.8 Synthesized Allocators and Cache

Performance

Custom-built allocators and cache-conscious allocation are both successful
techniques for increasing performance. However, the combination may yield
additional benefits. Cache-conscious allocation offers substantial speedups
for minimal effort. Profile-based allocator synthesis provides complete exe-
cution information and requires even less programmer effort to gather. The
goal of this thesis is to explore the potential for increased cache performance
using trace data to automatically optimize memory allocations.

Our technique logs information about program execution in order to
automatically discover contemporaneous accesses to dynamically-allocated
memory. During a trace run, allocations, deallocations, and accesses are
recorded. This information is then used to build a cache-conscious allocation
layout prior to subsequent runs. This allocation layout is built with com-
plete knowledge of all memory requests and their uses. In theory, this gives
our system information with which to build a cache-conscious allocator. Of
course, the drawback is that subsequent runs of the program must follow the
same allocation pattern in order to benefit from the new allocator. When
request patterns differ from the prior run, the cache-conscious allocator falls
back to a simple allocator.

Our technique works best for long running programs that allocate early
and then spend the majority of their execution time manipulating those allo-
cations. For a given data set, programs that fit this pattern can be run briefly
with logging, aborted, and then re-run using a cache-conscious allocator lay-

out. General-purpose programs with unpredictable allocation patterns will
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be better served by Chilimbi’s[8] approach. However, the potential exists for
greater performance increases using our technique because of the additional

information gathered in the profiling phase.

2.9 Summary

Cache-conscious memory allocation is a promising area of research that at-
tempts to place dynamic memory requests in memory so as to decrease the
number of cache misses and speed up programs. In this thesis we explore
how profiling information can be used to pre-build cache-conscious memory

placement strategies for the dynamic allocator.



Chapter 3

A Library for Static Allocation

In order to explore the potential of a profile based cache-conscious allocator,
we wrote a C library called 1ibstaticmalloc. Existing C programs require
minimal modification to utilize 1libstaticmalloc. The library gathers ex-
ecution information about the program during a logging run. A variety of
strategies can then be used to build a cache-conscious memory layout from
this information. The goal of this library is to explore the cache performance

differences between placement strategies.

3.1 Static Allocation

The 1libstaticmalloc library has two modes. When no allocation profile is
available, the library operates in logging mode. It uses a minimal malloc()
implementation that places requests sequentially with no memory reuse. Ad-
ditionally, the library records a variety of information about the program
execution to a log file. Once execution has ceased or the program has been
terminated, the log can be converted into a static allocation profile using the
sm-place tool. A variety of algorithms can be used to synthesize the profile.
After an allocation profile is available for a program, the library functions

in static allocation mode. This mode compares each request to its expected



CHAPTER 3. A LIBRARY FOR STATIC ALLOCATION 15

Logging Build Performance
Run Layout Run

Figure 3.1: Building a cache-conscious memory layout for faster execution.

requests list and places it at a predetermined location. If the sequence of re-
quests ever deviates from the profile, the allocator falls back on the allocator
used in logging mode with logging turned off. Figure 3.1 demonstrates the

process visually.

3.2 Interface

The library exposes the standard C allocation functions, including malloc(),
free(), calloc(), and realloc(). These functions are interchangeable with

their C standard library equivalents.

Rule of Thumb 2:

A good tool has a low barrier to entry.

Additionally, libstaticmalloc provides a variety of other functions used
to communicate information to the logging system about runtime behavior.
The ping() function allows programmers to describe memory accesses. It
takes a pointer to a memory block as well as a weight representing the num-
ber of accesses and records them in the log file. The ccmalloc() function
is compatible with Chilimbi’s ccmalloc() function. It takes not only an
allocation size, but also a pointer to another allocation that will probably be
accessed contemporaneously. These functions and others allow the program-
mer to provide the profile generator with increasing amounts of information.

A complete listing of the API is available below.
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/* Must be called before any other calls to libstaticmalloc */

void malloc_init (char* name);

/* Can be called at program end to print statistics */

void malloc_status ();

/* If called during a logging run, libstaticmalloc halts
execution. If called during a static run, libstaticmalloc
stops allocating from the profile. */

void malloc_done_logging ();

/* Standard C calls. */

void* malloc (unsigned int size);

void* calloc (unsigned int nmemb, unsigned int size);
void* realloc(void *ptr, unsigned int size);

void free (void* ptr);

/* Informs libstaticmalloc that ptr is being accessed.
Weight represents how heavily the data is being used. */

void ping (void* ptr, unsigned int weight);

/* Identical to malloc except that friend points to another
dynamic allocation that may be accessed contemporaneously
with this request. Friend may be NULL. */

void* ccmalloc (unsigned int size, void* friend);

/* Identical to calloc except accepts a friends pointer like
ccmalloc. */

void* cccalloc (unsigned int nmemb, unsigned int size, void* friend);
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3.3 Logging

The log file is a binary file located in a user’s .malloc/ directory. The format
of a log entry is a 4 byte logging code followed by a 4 byte parameter. This
pattern is repeated as many times as there are log entries. Tools exist to
convert log files into plain text and back again. If there is no profile available
when a program compiled with libstaticmalloc is run, logging mode is
automatically enabled. However, once a profile is available, the allocator

runs in static allocation mode and all logging is disabled.

3.4 Static Allocation Profiles

An allocation profile is a binary file located in a user’s .malloc/ directory.
It consists of several headers followed by a set of allocation requests. Each
request is encoded as a 4 byte integer size and a 4 byte address offset.

When in static allocation mode, the library maps the profile into memory.
This is doubly advantageous. First, it vastly simplifies profile access. The
standard Unix mmap () call returns a pointer to the file data, which then can
be treated as an array of memory request structures. This avoids complex
[/0O and storage allocation for the profile. Additionally, mmap() typically uses
a special interface to the kernel. Since mmap () attempts to return pages that
cannot become part of the data or stack segments, the profile is kept separate
from the addresses made available via sbrk() (the allocation function used
by libstaticmalloc to allocate user requests).

The total size of the requests is stored in the profile header, and enough
space to satisfy all of them is preallocated on application start. An index
is kept into the memory-mapped request array. Each request is compared
against the size of the next expected request. If at any point the size differs,
indicating a deviation from the allocation record, libstaticmalloc reverts
to simple allocation without logging mode. On the other hand, if the sizes

match, libstaticmalloc returns the predetermined address.
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3.5 Usage

In order to take advantage of libstaticmalloc the programmer needs to
add a call to malloc_init() at the beginning of the main() function. In
addition, the programmer needs to compile the target program, linking to

libstaticmalloc.

1. Include the header file:
#include <staticmalloc.h>

2. Call the library initialization function at the start of your program:

malloc_init ("program name") ;

3. Compile linking to the library:

gcc -lstaticmalloc ...

Rule of Thumb 3:

More information should correspond to better performance.

The programmer may also choose to provide the system with additional
information about his program’s memory usage. The most effective addition
is to replace calls to malloc() and calloc() with calls to ccmalloc() and
cccalloc(). The extra information these functions provide is potentially
valuable to the profile generator. In addition, calls to ping() provide in-
formation about memory request lifetime as well as helping the generator
evaluate the importance of each memory block. The more frequently an
object is accessed, the greater the potential for cache conflicts.

Calls to these functions might look like this (examples taken from cover):
e ¢ = (cell*)cccalloc(l,sizeof(cell),lst);

e malloc_init(argv[0]);
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e ping (ent, 1);

It is difficult to anticipate the effects of an incomplete annotation on the
allocator synthesis process. For this reason if a function is used to provide

the compiler with information, it should be used in applicable situations.

3.6 Summary

The 1ibstaticmalloc library provides all the standard C dynamic allocation
functions making porting easy. In addition, the process of adding extra
function calls that provide 1ibstaticmalloc with more information is simple

and can be accomplished with minimal effort.



Chapter 4
Memory Layout Algorithms

The offline allocator synthesizer can use a number of possible placement algo-
rithms. Each strategy results in different performance for different programs.
In addition, the best strategy may be dependent upon the thoroughness of
the programmer’s annotations. For example, programs with minimal usage
information will be better served by techniques that make use of friendship
information. It is worth noting that none of the strategies below use knowl-
edge about freed memory in order to recycle memory locations, although this

possible.

4.1 Simple

The simple allocator generates a statically allocated profile that is identical to
the logging run. Since the logging run places requests sequentially and reuses
no space, a profile generated with this strategy will have one request after
another. This is the simplest of all possible allocation strategies. It is a useful

reference because it resembles the layout strategies of typical allocators.
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4.2 Random

The random strategy creates a new profile by shuffling the requests randomly
and then placing them sequentially. This strategy is not designed to demon-
strate a performance increase. Instead it serves as an example of a system

using completely uninformed placement.

4.3 Size

The size heuristic takes all logged allocations and sorts them in order of size.
The allocations are then placed, smallest first, in memory. This naive al-
gorithm hypothesizes that allocations of the same size may be similar types
of objects and therefore might be accessed contemporaneously. Placing con-
temporaneously accessed requests near each other should minimize collisions

and maximize the effect of line loading.

4.4 Friends: Depth-First

The friends strategy depends on information gleaned from the Chilimbi[7]
ccmalloc() style interface. This information is used to build a graph of the
memory requests where nodes are connected by unidirectional edges. The
connections point from the friend supplied to ccmalloc() to the returned
request. This graph can then be traversed for a variety of purposes. This
strategy performs a depth-first search, assigning sequential address to nodes
as they are traversed. See Figures 4.1 and 4.2 for an example. It starts
traversal at the largest request. When the depth-first traversal of friends
completes, it continues from the next largest unplaced request.

This strategy helps prevent conflicts between requests that the program-
mer thinks are likely to be accessed contemporaneously. Of course, the suc-

cess of the this strategy depends on the programmer’s ability to chose accu-
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Figure 4.1: A sample linked structure where all node connections are also
Friend connections or Usage connections.

Figure 4.2: A sample linked structure laid out with Friends Depth-First or
Usage Depth-First.
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Figure 4.3: A sample linked structure laid out with Friends Grouped or Usage
Grouped.

rate friends for his calls to ccmalloc (). It should be particularly effective in
situations where the data is accessed via depth-first traversals. In this case,

this layout may maximize prefetching.

4.5 Friends: Grouped

The grouped friends strategy is similar to the friends depth-first strategy:;
however, instead of placing requests as it follows the friends chain, the
grouped strategy moves through the request list and searches for requests
that have friends. When it encounters one, it places all the friends sequen-
tially, without placing the request that they are all friends with. This strategy
supposes that requests which all share a common root friend may actually
be accessed contemporaneously. This resembles breadth-first search, but it
is slightly different. Groups of friends are placed in the sequential order of
their hub instead of using the queue system that breadth first search relies
on. After all friend groups have been placed, the list is searched again and
all unplaced requests are sequentially laid out. The success of this strategy
greatly depends on the application’s memory access patterns. See Figures

4.1 and 4.3 for an example.
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4.6 Usage: Depth First

The memory access information generated during a logging run via the
ping() function is the single most valuable form of information the pro-
file synthesizer has at its disposal. It represents actual program behavior.
This strategy builds a graph of request objects connected unidirectionally
by actual knowledge of their contemporaneous access. The request that is
accessed first gets a weighted edge pointing to the request that is accessed
second. In cases where the same access patterns occur multiple times, the
edge weights between requests are increased. The usage depth first strategy
follows the same algorithm as the friends depth first strategy, except it uses
this usage data instead of the friends information. See Figures 4.1 and 4.2

for an example.

4.7 Usage: Grouped

The grouped version of usage uses the same strategy as friends grouped. It
searches for requests that have links to other requests used after them. It
then places those requests as a group in the hope that they might be accessed
in the same general part of the program, despite not being immediately
contemporaneous. Placing these requests together helps to keep them from

conflicting. See Figures 4.1 and 4.3 for an example.

4.8 One Per Line

This strategy is like Simple in that it places requests in the order of their
occurrence. However, this strategy aligns each new request at the start of
the cache line. This means that there are empty spaces in memory between
requests. This effectively shortens line size. It eliminates prefetching, because

there cannot be multiple objects per line. In addition to cache performance,
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this also potentially increases the TLB miss rate because of address space

dilution.

4.9 Smart

The Smart allocation strategy tries to predict (based on cache size, line size,
and way) which addresses will conflict in memory. Given information about
friendships between requests and probabilistic information after request life-
time, the Smart strategy tries to place each request so that it conflicts with
the minimum possible number of friends. When faced with a potential con-
flict, this strategy will make sure the conflict occurs with a friend request
least like to be used soon.

Unfortunately, due to its the excessive computational requirements, we
were unable to benchmark the Smart algorithm; however, basic testing indi-

cated that it performed too poorly to be considered.
HERE

4.10 Creating New Algorithms

Creation of an a new algorithm is a simple process; one merely registers a
new function in the Python library of placement strategies. The function
must accept a hash table of memory requests and assign locations to each
request object in the table. The memory requests objects have a number of
fields containing information about their size, friends, access weight, known
lifetime, etc. Information is also available about the cache size, cache line size,
and cache way. A programmer is free to use this information in any way seen
fit in order assign addresses to the requests. This easy extensibility ensures
that libstaticmalloc can be adapted to meet the needs of programs with
unusual allocation patterns. The code for the Simple placement strategy is

included below as a demonstration.
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# The procedure accepts a hashtable of requests.

def place_simple (reqgs):
# Build a list of all the requests from the hashtable.
req_list = regs.values()
# Sort the list by request time.

req_list.sort (lambda x,y: x.index - y.index)

# Location is an address pointing just beyond
# the last allocated memory.

location = 0O

# For each request in our sorted request list...
for req in req_list:

# we assign it an address...

req.location = location

# and increase our high water mark.

location = location + req.size

# Return the amount memory we used for the layout.

return location

4.11 Summary

There are a variety of strategies that can be used with libstaticmalloc.
These strategies are easy to describe and implement. Given the variety of
potential layouts it seems possible that some might result in fewer cache
misses than the standard sequential allocation strategy used in most system

allocators.



Chapter 5

Results

In order to compare the effectiveness of 1libstaticmalloc, we put together a
suite of test programs. These programs were then annotated to use the more
sophisticated ccmalloc() API. This API conversion allowed us to bench-
mark the applications using all of our placement strategies. The original
versions as well as these modified versions, were benchmarked on several
applications. The versions that used libstaticmalloc were tested using a
variety of memory layout algorithms.

Results showed that memory layout can dramatically effect program speed
and cache miss rate. Certain strategies performed better than sequential lay-
out while others performed worse. We saw performance increases of up to
28% for contrived test cases and up to 5% for certain real programs. We also
witnessed programs that took 2.6 times as long to complete when using poor
memory layouts. Building memory layouts ahead of time for the dynamic
allocator using profiling information appears to be a successful strategy for

achieving better cache performance.
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5.1 Testcases and Data Sets

The first program, cover, was written in C to solve the cover problem using
Don Knuth’s[13] famous dancing links method. Problems are represented
internally by a two-dimensional array that is built from circularly linked lists.
Cover consisted of 479 lines of code and was annotated for 1ibstaticmalloc
in under 20 minutes.

Three randomly generated data sets were used to benchmark this pro-
gram. Neither data set has a cover solution, but this is unimportant for
benchmarking purposes because the program must still exhaust the search
space. One data set had 100 rows and 100 columns. Another had 300 rows
and 300 columns. The last had 500 rows and 500 columns. In all cases, the
probability of a position being occupied was 1 in 5; however, this only affects
the likelihood of a solution, not the run time of the program.

The second program, hp, was written by Chris Douglas to generate and
make use of a game state space for a small chess-like game called Hexapawn
devised by Martin Gardner[9]. It expands all possible board states for a
given board in order to find the optimal moves for a player. The hp program
was benchmarked on a board with 4 rows and 3 columns. The columns
represent the number of pawns each player controls. Hexapawn consists of
322 lines of code and was annotated in around 20 minutes. Though the code
for Hexapawn is relatively dense, annotating it was not difficult.

The last program, traverse was specially written as a testcase. It al-
locates a binary tree of the specified depth containing a size 20 integer ar-
ray at each node. It then traverses the tree a specified number of times
adding 1 to every integer in every array. The most important feature about
its behavior is that it builds the tree depth-first in the left-most direction.
However, when it traverses the tree, it does so in a depth-first, right-most
fashion. Though obviously a contrived example, traverse illustrates the poor
performance cause by an allocator/traversal mismatch. This program was

primarily benchmarked on a 17 layer deep tree performing 10 traversals per
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run. The traverse program was only 55 lines of code and was written to use

the ping() and ccmalloc() functions.

5.2 Comparison of Layout Strategies

Each of the placement strategies was compared on identical test programs
with identical test cases. The 1libstaticmalloc library automatically starts
timing the application as soon as user code begins execution and prints the
time spent as soon as user code finishes. This is accomplished by two func-
tions that are called at the beginning and end of every program that uses
libstaticmalloc. The times are reported by the Unix gettimeofday()
function, which has microsecond accuracy. In situations where system allo-
cator performance was measured, we used a new library called libtiming
that contained only the timing parts of those two functions and no alloca-
tion code or functions. Each data set was run a fixed number of times. All
tests were run at least 1,000 times, although the quicker ones were run more
times for increased accuracy. The time for the fastest execution was kept in
order to identify the best possible hardware performance. Modern computer
systems are very complex and any number of situations can temporarily slow
down program execution. In these situations, the times do not accurately
represent the amount of CPU time required by the program. By taking the
best time, we ensure that operating system behavior and transient affects do
not unduly affect the results. The best times for each strategy are listed in
Table 5.1 and the percent speedup compared to Simple for each strategy is
available in Table 5.2. This data is a represented graphically in Figures 5.1,
5.2 and 5.3.

It is worth noting that we were unable to benchmark the Smart algorithm
due to its the excessive computational requirements. However, basic testing

indicated that it performed too poorly to be considered.
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cover cover cover hp | traverse
Algorithm 100x100 | 300x300 | 500x500 4x3 16, 10
Simple 0.002352 | 0.080595 | 0.926647 | 0.007496 | 0.111173
Random 0.002395 | 0.211720 | 1.949964 | 0.010427 | 0.213957
Size 0.002346 | 0.080677 | 0.926026 | 0.007491 | 0.110867
Friends DF 0.002340 | 0.080653 | 0.925796 | 0.007841 | 0.079430
Friends Grouped | 0.002353 | 0.083250 | 0.933972 | 0.007570 | 0.114451
Usage DF 0.002361 | 0.076605 | 0.923315 | 0.007476 | 0.079179
Usage Grouped 0.002373 | 0.090737 | 1.047584 | 0.007497 | 0.111261
Oneperline 0.002442 | 0.151122 | 1.245283 | 0.009993 | 0.144253

Table 5.1: Best times in seconds for various test cases and data sets. (In all
tables, overall best performance appears in italics.)

Rule of Thumb 4:

Do not try to be too clever.

All speed tests were performed on an 2.4 GHz Pentium 4 Xeon with SKB
of L1 cache, 512KB of L2 cache, and 2MB of L3 cache. This system ran
FreeBSD 4.8 and had 1 GB of RAM.

The single most important fact about the data is that performance num-
bers varied. All test cases ran identical code. The only difference between the
test cases was the memory layout used for the dynamic allocation requests.
The variation in execution time suggests that memory layouts can actually
affect data caching.

This hypothesis was investigated further using Valgrind’s Cachegrind
tool[1]. Cachegrind simulates program execution on an Intel Architecture
32 bit processor and uses a cache model to gather cache usage statistics. All
Cachegrind simulations were performed with a simulated 16KB, 8-way, 32B
per line, L1 instruction cache; a 8KB, 4-way, 64B per line, L1 data cache; and

a H12KB, 8-way, 64B per line, combined L2 cache. This is a common cache
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cover cover cover hp | traverse
Alogrithm 100x100 | 300x300 | 500x500 4x3 16,10
Simple 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Random 1.0182 | 2.6270 | 2.1043 | 1.3910 | 1.9245
Size 0.9974 | 1.0010 | 0.9993 | 0.9993 | 0.9972
Friends DF 0.9949 1.0007 | 0.9991 | 1.0460 | 0.7145
Friends Grouped | 1.0004 | 1.0329 | 1.0079 | 0.9832 | 1.0295
Usage DF 1.0038 | 0.9505 | 0.9964 | 0.9973 | 0.7122
Usage Grouped 1.0089 1.1258 1.1305 | 0.9973 | 1.0008
Oneperline 1.0383 | 1.8751 1.3439 | 1.3331 | 1.2976

Table 5.2: Time ratio compared to Simple for test cases and data sets.
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Figure 5.1: Best cover times per strategy on a 300x300 data set.



CHAPTER 5. RESULTS 32

0.012
0.01
0.008

0.006

Time (secs)

0.004

0.002
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Figure 5.3: Best traverse times per strategy for a tree of depth 16 with 10
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L1 Data L1 Data | L2 Data L2 Data
Algorithm Data Refs Misses | Miss Rate Misses | Miss Rate
Simple 28,937,189 | 5,814,499 20.00% 556,132 1.90%
Random 28,937,189 | 6,815,227 23.50% | 1,125,087 3.80%
Size 28,937,187 | 5,811,861 20.00% 551,960 1.90%
Friends DF 28,937,187 | 5,809,381/ 20.00% 556,153 1.90%
Friends Grouped | 28,937,187 | 5,827,200 20.10% 583,593 2.00%
Usage DF 28,937,187 | 5,809,386 20.00% | 535,461 1.80%
Usage Grouped | 28,937,187 | 6,083,590 21.00% 604,834 2.00%
Oneperline 28,937,189 | 6,470,792 22.30% | 1,520,016 5.20%

Table 5.3: cover running on a 300x300 data set.

configuration for many Pentium IV machines. A real Pentium IV would have
a 12K micro-op trace instruction cache. However, since libstaticmalloc is
only concerned with data cache performance, this does not affect results. It
is also worth noting that the number of total data references varies by one or
two because of timing-dependent code. These numbers are not large enough
to affect the results in any significant manner.

The cache performance figures in Tables 5.3, 5.5, and 5.7 corroborate the
execution times referenced above. Relative comparisions to Simple are also
available in Tables 5.4, 5.6, and 5.8. As we can see in Figures 5.4, 5.5, and 5.6
the number of L1 and L2 data cache misses vary depending on the placement
strategy used to build the memory layout.

The differences in execution time combined with Valgrind’s confirmation
of fewer cache misses for certain strategies are strong evidence that it is pos-
sible to optimize programs through careful dynamic memory layout. Given
this understanding, a variety of interesting features present themselves in the
data.

The first feature is the difference in execution times and cache miss rate
between the Simple and Random strategies. In many ways, Simple represents

the standard approach to memory layout. The vast majority of allocations
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L1 Data L2 Data
Algorithm Miss Ratio | Miss Ratio
Simple 1.0000 1.0000
Random 1.1721 2.0231
Size 0.9995 0.9925
Friends DF 0.9991 1.0000
Friends Grouped 1.0022 1.0494
Usage DF 0.9991 0.9628
Usage Grouped 1.0463 1.0876
Oneperline 1.1129 2.7332
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Table 5.4: Cache miss ratio of Simple for cover running on 300x300 data set.

L1 Data | L1 Data | L2 Data | L2 Data
Algorithm Data Refs | Misses | Miss Rate | Misses | Miss Rate
Simple 5,508,372 | 24,350 0.40% 23,383 0.40%
Random 5,508,372 55,144 1.00% 35,450 0.60%
Size 5,508,370 24,570 0.40% 23,376 0.40%
Friends DF 5,508,372 24,485 0.40% 23,380 0.40%
Friends Grouped | 5,508,372 24,390 0.40% | 23,369 0.40%
Usage DF 5,508,372 24,444 0.40% 23,377 0.40%
Usage Grouped 5,508,372 24,333 0.40% 23,384 0.40%
Oneperline 5,508,372 51,013 0.90% 49,086 0.80%

Table 5.5: hp running on 4x3 board.
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L1 Data L2 Data
Algorithm Miss Ratio | Miss Ratio
Simple 1.0000 1.0000
Random 2.2665 1.5161
Size 1.0099 0.9997
Friends DF 1.0064 0.9999
Friends Grouped 1.0025 0.9994
Usage DF 1.0047 0.9997
Usage Grouped 1.0001 1.0000
Oneperline 2.0967 2.0992
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Table 5.6: Cache miss ratio of Simple for hp running on 4x3 board.

L1 Data | L1 Data | L2 Data | L2 Data
Algorithm Data Refs Misses | Miss Rate Misses | Miss Rate
Simple 28,455,701 | 994,636 3.40% | 970,229 3.40%
Random 28,455,636 | 1,571,797 5.50% | 1,480,751 5.20%
Size 28,455,703 | 994,636 3.40% | 970,229 3.40%
Friends DF 28,455,638 | 987,289 3.40% | 970,224 3.40%
Friends Grouped | 28,455,703 | 1,002,154 3.50% | 970,322 3.40%
Usage DF 28,455,703 | 987,094 3.40% | 970,237 3.40%
Usage Grouped | 28,455,638 | 997,315 3.50% | 970,260 3.40%
Oneperline 28,455,703 | 1,408,294 4.90% | 1,381,616 4.80%

Table 5.7: traverse running with a depth of 16 and performing 10 traversals.
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L1 Data L2 Data
Algorithm Miss Ratio | Miss Ratio
Simple 1.0000 1.0000
Random 1.5803 1.5262
Size 1.0000 1.0000
Friends DF 0.9926 0.9999
Friends Grouped 1.0076 1.0001
Usage DF 0.992/ 1.0000
Usage Grouped 1.0027 1.0000
Oneperline 1.4159 1.4240
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Table 5.8: Cache miss ratio of Simple for traverse with a depth of 16 and
performing 10 traversals.
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Figure 5.4: Cache misses for cover running on a 300x300 data set.
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under traditional allocators are linear and sequential. The time of alloca-
tion is usually proportional to the memory address of the allocated memory.
Reuse of freed memory complicates the scenario, but only slightly. On the
other hand, Random represents a completely uninformed layout. Any in-
formation about usage encoded in the temporal sequence of the requests is
destroyed.

The data show a striking difference between Simple and Random perfor-
mance. Simple was 2.63 times faster than Random and suffered 15% fewer L1
data misses and 50.6% fewer L2 data misses for the Cover program and a 300
by 300 data set. Since all memory is preallocated by libstaticmalloc the
only difference between these two executions was the memory layout used.
This shows that the sequential layouts that most system allocators produce
actually do a reasonable job preventing collisions and taking advantage of
cache prefetching. This should not be entirely surprising. If caching and
linear layouts combined poorly the question of allocation layout would have
been more thoroughly explored previously. Since sequential layouts perform
better than random layouts, it may be possible to find strategies that per-

forms better than sequential.

Rule of Thumb 5:

Sequential layouts are not unreasonable for many applications.

Indeed, it seems likely that the best layout strategy will vary by program,
and may even vary by data set. We explore this hypothesis below. However,
first consider the execution and cache statistics for the Cover problem run
over a 300 by 300 board in Tables 5.1 and 5.3.

In order from best performance to worst, the strategies were: Usage DF,
Simple, Friends DF, Size, Friends Grouped, Usage Grouped, Oneperline, and
Random. Of the strategies, only Usage DF was faster than Simple. However,
it proved 5.2% faster with 3.7% fewer L2 data cache misses than Simple.
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This corresponded to 5113 fewer L1 data misses and 20671 fewer L2 data
misses than Simple. This shows that it is possible to create cache-conscious
layouts that perform better than a sequential layout. The connection between
allocation order and eventual use typically exists; however, profiling should

always be able discover other, stronger connections by observing execution.

Rule of Thumb 6:

Cache-conscious allocation can speed up programs.

Both Random and Oneperline both performed significantly worse than
Simple. Of the remaining strategies, we can see that Size and Friends DF
came very close to Simple, trailing by less than 0.2% execution time. Remem-
bering that sequential layouts do significantly better than random placement,
the fact that these two strategies come close to the performance of sequential
layouts suggests that the techniques they use are an effective means of opti-
mizing for cache performance. That they fail to surpass Simple only means

that the techniques are perhaps not sufficient on their own.

5.3 Libstaticmalloc vs. the System Allocator

Obviously, the choice of allocation strategy can have a significant impact on
a program’s speed. How then, does libstaticmalloc compare to the system
allocator?

In the above data, libstaticmalloc performs extremely well. The 1ib-
staticmalloc Usage DF strategy is 95% faster than the FreeBSD 4.8 system
allocator. However, this is a misleading way to look at the data. It is vital to
note that the system allocator’s strategy is very similar to 1ibstaticmalloc’s
Simple strategy. Any differences in execution times between these two is
strictly the result of 1ibstaticmalloc’s slimmer functions and reduced num-
ber of system calls because of preallocation. The data shows that there is in-

deed a major difference between the two. Just switching to libstaticmalloc
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‘ Allocator ‘ Prealloc ‘ Strategy ‘ Time (secs) ‘ Ratio to System ‘
System No N/A 0.149683 1.0000
Libstaticmalloc | No Simple 0.094855 0.6337
Libstaticmalloc | Yes Simple 0.080595 0.5384
Libstaticmalloc | Yes Usage DF 0.076603 0.5118

Table 5.9: Cover running on a 300 by 300 data set comparing libstaticmalloc

with and without preallocation to the FreeBSD system allocator.

L1 L2

L1 Data L2 | Data

Data Miss Data | Miss

Allocator Strategy Data Refs Misses Rate | Misses | Rate
System N/A 16,947,726 | 5,942,015 | 35.00% | 739,109 | 4.30%
Libstaticmalloc | Simple 1,284,175 164,030 | 12.70% 2,767 | 0.20%
Libstaticmalloc | Usage DF | 1,284,177 | 163,406 | 12.70% 2,767 | 0.20%

Table 5.10: Cover running on a 300 by 300 data set comparing libstaticmalloc
to the GNU LibC system allocator.
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Figure 5.7: Cover running on a 300 by 300 data comparing the effects the
System allocator, libstaticmalloc, and preallocation.

shaves 47% (0.069088 seconds) off cover’s execution time on the 300 by 300

data set.

Rule of Thumb 7:
There are many good reasons to use the system allocator, but using it

comes with a performance cost.

The majority of the speedup comes from the simpler execution process.
Table 5.9 and Figure 5.7 shows that there is a 36.6% speedup just from
switching to a non-preallocated version of libstaticmalloc. This version
of 1libstaticmalloc only calls sbrk() to enlarge the data segment when a
static address is returned that is past the current segment boundary. For
a sequential allocation scheme like Simple, this results in an sbrk() call

for every single allocation. This is the worst possible ratio of system calls
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to memory requests. Most system allocators operate more intelligently and
request memory in chunks, which they then subdivide to handle multiple
allocation requests. However, the difference between the system allocator and
libstaticmalloc with no preallocation represents the minimum speedup
gained only from libstaticmalloc’s simplified internals.

There may also be an associated decrease in cache miss rate. The 1ib-
staticmalloc library does not need to store request size tags near the allo-
cations like many system allocators do. This may eliminate cache pollution.
However, it is difficult to measure this effect independently, so we will con-
sider it together with the effects of 1libstaticmalloc’s simplified internals.

Additionally, the performance difference between libstaticmalloc with
and without preallocation represents the speedup gained by preallocation.
For the cover 300 by 300 data set, there is a .014260 second speedup which
amounts to a 9.5% gain over the system allocator from just preallocation.
Like all system calls, brk() and sbrk() come at a cost. The fewer times

they are called, the faster an allocator will perform.

Rule of Thumb 8:

Avoiding unnecessary work is always advantageous.

These results are worth noting despite their peripheral relationship to
cache-conscious allocation. Applications that have allocations requests rou-
tinely made at the beginning of execution may benefit from a dynamic al-
location interface that can make use of this information. Using simplified
allocation pathways and preallocation may speedup these allocations accord-
ingly.

Since libstaticmalloc must take the time to map a memory profile into
memory before each execution, it is important to consider how short-lived
programs perform using libstaticmalloc. The chief worry is that the initial

overhead might overwhelm any benefits accrued.
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Analysis of Tables 5.11 and 5.12 shows that smaller problems do benefit
less from libstaticmalloc because of amortization issues. However, both
cover running on a 100 by 100 data set or hp running on a 4 by 3 board
perform better than the system allocator. Cover running on a 100 by 100
board using Simple performs 7.1% percent faster than the system allocator.
A slightly larger problem, hp using a 4 by 3 board and Simple performs 28.7%
better than the system allocator. Cover on a 300 by 300 board benefits even
more, speeding up by 46.1%. Clearly, libstaticmalloc’s initial overhead is
amortized over total run time; however, even for very short running programs,
libstaticmalloc runs faster.

Obviously, the system allocator is likely the preferred allocation library
for most programs. Because libstaticmalloc does not reuse freed memory,
it can be memory inefficient. A default system allocator needs to be able to
reuse memory. In fact, memory reuse is the main source of complexity within
modern allocation libraries. Additionally, the problem of generating profiles
is unnecessarily complex for most applications. However, libstaticmalloc
does serve computationally intensive programs with specific allocation pat-
terns rather well. Of course, memory reuse would not be difficult to add to
libstaticmalloc. Any allocation strategy is currently free to reuse mem-
ory, though none yet do. Combined with calls to the system allocator during
the logging run, libstaticmalloc could avoid memory inefficiency.

Additionally, my experiments with 1ibstaticmalloc’s performance sug-
gest that perhaps additional interfaces should be added to C allocation li-
braries to optimize requests allocated through the dynamic memory system

that are actually static.

Rule of Thumb 9:

Systems should provide alternative allocation functions.
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‘ Allocator ‘ Strategy ‘ cover 100x100 ‘ hp 4x3 ‘
System N/A 0.002533 | 0.010524
Libstaticmalloc | Simple 0.002352 | 0.007496
Libstaticmalloc | Friends DF 0.002340 | 0.007370

Table 5.11: libstaticmalloc and the FreeBSD system allocator times in sec-
onds for cover and hp on small data sets.

‘ Allocator ‘ Strategy ‘ cover 100x100 ‘ hp 4x3 ‘
System N/A 1.0000 | 1.0000
Libstaticmalloc | Simple 0.9285 | 0.7123
Libstaticmalloc | Friends DF 0.9238 | 0.7003

Table 5.12: Time ratios for libstaticmalloc compared to the FreeBSD system
allocator for cover and hp for small data sets.
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Figure 5.8: Cover running on a 100 by 100 data set comparing libstaticmalloc
to the FreeBSD system allocator.



CHAPTER 5. RESULTS 45

5.4 Effectiveness of Strategies Varies

The impact that the data set had in relation to 1ibstaticmalloc’s perfor-
mance versus the system allocator suggests that the relationship between
the strategy and the data set deserves further attention. A brief review of
strategy performance in 5.1 shows no single winning strategy:.

For cover with a smaller 100 by 100 data set, the Friends DF strategy
wins by a very small margin. The two larger cover data sets both perform
best using Usage DF. Lastly, hp performs best using Friends Grouped.

The differences between Grouped and Depth-First should not be surpris-
ing. Different traversal patterns will have correspondingly different optimal
layouts. In fact, this is the main reason that the effectiveness of different
strategies depends on the program. There is interesting future work for pro-
grammers to code static allocator strategies that are custom-tailored to their
applications.

However, the differences between Usage and Friends should be surprising.
In general Usage layouts should perform better than Friends layouts. Friends
represents the programmer’s best understanding of the object relationships,
while Usage represents the actual relationships (provided the annotation is
correct). The short execution time of cover on a 100 by 100 data set probably
explains this behavior. It seems possible that the limited linkage provided by
friends information actually was easier to place than the more complicated
usage information that did not contain any strong edges because of the short
execution time.

In addition, it is theoretically possible for the data set to help determine
the optimal placement strategy if the data set effects the memory relation-
ships. Though this likely did not manifest in any of our benchmarks, it is an
interesting avenue for future exploration.

All the strategies discussed in the this thesis operate by putting related
objects near each other in memory. They do this to avoid conflicts and take

advantage of prefetching. Using only layouts of this type, there does not



CHAPTER 5. RESULTS 46

exist a single, optimal, layout strategy for all programs and data sets. The
best strategy for any given program and data set will depend on the access
pattern during execution. However, if a layout strategy fully understood the
cache implications of every placement and access, it might be possible to
find an algorithm for the absolute cache-optimal layout. However, given that
even system architects have a difficult time predicting exact cache behavior,

creating such a perfect strategy is likely impossible.

5.5 Slimming Down Libstaticmalloc

In order to support both logging mode and static mode from the same library,
libstaticmalloc is sprinkled with conditionals that test the current state
of the library. This is unnecessary overhead during a static allocation run. It
is possible that using two separate libraries for logging and static allocation
could dramatically accelerate libstaticmalloc. We built a second library,
libstaticmalloc-fast, to investigate whether these conditionals were af-
fecting the overall speed of the system. libstaticmalloc-fast was created
by removing all logging or debugging features from libstaticmalloc. The
result was a trimmer library that would run identically to 1ibstaticmalloc,
provided a profile had already been generated. The performance results for
libstaticmalloc and libstaticmalloc-fast are available in Table 5.13
and Table 5.14.

The performance increase is noticeable, but minimal for cover on a 300
by 300 data set. It is quite significant for runs of hp on a 4 by 3 board, which
is a shorter problem than cover. However, the actual time wasted by using
libstaticmalloc for hp is even less. This suggests that the added complex-
ity of supporting an additional library and forcing programs to link against a
separate library after the logging run is not justified. However, were a library
like 1ibstaticmalloc ever to become a core part of a system, the dynamic

linker could intelligently choose which library to use, thus eliminating the
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‘ Strategy ‘ Libstaticmalloc ‘ Libstaticmalloc-fast ‘
Simple 0.080595 0.080332
Random 0.211720 0.210171
Size 0.080677 0.079961
Friends DF 0.080653 0.080265
Friends Grouped 0.083250 0.082766
Usage DF 0.076603 0.075938
Usage Grouped 0.090737 0.090269
Oneperline 0.151122 0.150881

Table 5.13: cover on 300x300 data set - times for libstaticmalloc and
libstaticmalloc-fast in seconds.

‘ Strategy ‘ Libstaticmalloc ‘ Libstaticmalloc-fast ‘
Simple 0.007496 0.004799
Random 0.010427 0.008199
Size 0.007491 0.004875
Friends DF 0.007841 0.005279
Friends Grouped 0.007370 0.004826
Usage DF 0.007476 0.004694
Usage Grouped 0.007497 0.004698
Oneperline 0.009993 0.007800

Table 5.14: hp on a 4x3 board - times for libstaticmalloc and libstaticmalloc-
fast in seconds.
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recompile complexity while gleaning a small additional performance boost.

5.6 The Importance of Packing

Another important layout strategy is memory packing. Memory holes can
slow programs significantly. This phenomenon manifested when benchmark-
ing the Oneperline placement strategy. In order to ensure that each request
begins on a new cache line, this strategy pads between allocations. This
blank space comes with a price. Compare Oneperline’s performance to Sim-
ple in Table 5.1. With padding as the only difference between Simple and
Oneperline, Oneperline was 1.88 times slower. Additionally, Table 5.3 shows
that Oneperline had 28383 more L1 Data Cache Misses, raising the program’s
total miss rate from 12.7% to 14.9%. In order to be successful, it seems that

a memory layout strategy should pack memory.

Rule of Thumb 10:

Low object density leads to poor performance.




Chapter 6
Conclusions

In this thesis, we investigated the potential benefits of cache-conscious dy-
namic memory allocation. In the process, we made a number of important

observations. However, there is room for further exploration.

6.1 Benefits of Profile-Based Allocation

Profile-based allocation as a general technique has advantages over tradi-
tional allocation in certain situations. Its slight start up overhead is easily
paid back by the extremely slim allocation code path and the preallocation
speedup. This technique is certainly not new. It is common for applications
that perform the same actions on start up to cache the result. It might be
advantageous for allocation libraries to allow programmers to inform the li-
brary about dynamic requests that are actually static. This not only allows
the allocator to optimize its own performance for the those requests, but it

also allows the far more exciting possibility of static allocation reordering.
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6.2 Dynamic Memory and Cache

Certain programs exhibit allocation behavior such that it is possible to fully
understand their memory usage patterns by profiling only the allocation
phase of their life and a small portion of their computationally expensive
main phase. Any program that builds a complex data structure and then
repeatedly traverses, reads, and modifies the structure fits this pattern. For
these programs, the static allocation techniques discussed above are actually
feasible for the majority or entirety of the program’s memory requests. In
this situation, there exists the potential to arrange memory layouts ahead of
time for optimal cache performance.

We have shown that memory layouts can have a real impact on total
program performance. A variety of strategies exist to build these layouts, and
the ones that used the most actual profile information (like Usage DF) seemed
to perform the best. Friends DF, which uses programmer knowledge instead
of runtime knowledge, performed reasonably well, but in most cases worse
than Usage DF. This suggests that information available only at runtime
may be extremely valuable to cache-conscious memory allocation systems.
This is an advantage for profile based system.

Of course, it is worth noting that sequential allocation strategies already
take some advantage of cache. Sequential layouts perform significantly better
than random layouts. However, the added performance boost of static al-
location, combined with the potential for cache-optimal layouts, may tempt
programmers of certain classes of programs.

Additionally, it is worth comparing these results to Chilimbi’s work[7].
Chilimbi et al. ultimately showed a much larger cache related performance
boost, despite our system’s extra profile knowledge. This could be attributed
to a variety of factors, including more time spent on his system, better algo-
rithms, better test cases, or better data sets. Additionally, it is unclear that
the entirity of Chilimbi’s performance gains are the result of increased cache

performance.
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Regardless, memory layouts can have a significant effect on overall pro-
gram performance, and static memory allocation combined with profiling is

an elegant way take advantage of this opportunity.

6.3 Opportunities for Further Work

Future work should explore the effects of new placement strategies. The
success of the various layout strategies in this thesis is extremely promising.
All the strategies tested were relatively simple. It seems likely that more
advanced strategies might be able to achieve even greater speedups. Addi-
tionally, tailoring placement strategies to programs might allow even greater
speeds. The ease with which strategies can be written opens the door for
programmer exploration.

Another interesting possibility is connecting libstaticmalloc to the de-
fault system allocator. For example, we could use the system allocator as a
fall-back allocator when requests diverge from the profiled order. Currently,
libstaticmalloc falls back upon the strictly sequential logging allocator
(with logging turned off for speed reasons). This is a simple solution, but
once the application has diverged from its profile, there is no reason not to
use the highly tuned system allocator instead. This would require linking
into the system allocator’s internal hooks.

One could also attempt to use the system allocator as the logging alloca-
tor. A simple wrapper around the internal functions of the system allocator
could provide logging while still allowing reuse of freed memory and other
features expected of modern allocators, even during the logging run. These
two uses of the system allocator might come at minimal cost while tightly
integrating libstaticmalloc with the operating system it is running on.

Another area for future work is to make profile generation automatic. A
tool that could select an optimal profile simply by analyzing the log would

very helpful for programmers. It would eliminate the need for programmers
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to experiment with alternate placement algorithms as well as opening the
path for a fully automatic profile generation system that automatically builds
a profile on termination of a logging run. This could make libstaticmalloc
even easier to use.

Chilimbi depends on user information and works at run time. We use pro-
file information, but work offline. Perhaps an even more effective strategy
could use profile information to synthesize allocators while simultaneously
allowing for adjustment at run time. At the very least, it would be advanta-
geous to have an allocator that did not revert to completely naive behavior
on departure from the profiled sequence of requests.

A significantly more advanced version of a profile-based allocator synthe-
sizer might generate trend-based allocators. These allocators could respond
to more than just a sequence of requests and would handle deviations from
request order while still understanding enough about the program’s runtime
behavior to optimize cache performance.

Indeed, the ultimate static allocator would gather information over many
consecutive runs. During periods of low system load, the analyzer /synthesizer
would run and use techniques to tune a flexible allocator profile.

Although libstaticmalloc was written for C, the technique it uses is
applicable to languages with implicit allocation. Indeed, many interpreted
languages use custom-built allocators already. These interpreters could be
easily modified to use cache-conscious static allocation techniques. In ad-
dition, languages that lack explicit pointers are not constrained to use the
one placement per execution model. This allows them to take advantage of
situations where ideal memory layout varies over program time.

The potential for cache-conscious memory layouts in managed runtimes
is almost limitless. Because of garbage collection, these systems already have
the capability to rearrange objects in memory. Since collection is typically
performed by a copying garbage collector, the runtime has the potential to

rearrange memory with every collection. Building a cache-conscious memory
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layout at this point is identical to how we build layouts profiles offline in our
system. Combined with the potential to gather memory usage information
from within the managed runtime, these environments are a good match for
the techniques described in this thesis.

Such systems are still far away. However, in the meantime, the knowl-
edge that there is performance to be gained using cache-conscious allocation

techniques is enough.



Appendix A

Rules of Thumb

10.

. Object-oriented programming degrades cache performance.

. A good tool has a low barrier to entry.

More information should correspond to better performance.
Do not try to be too clever.

Sequential layouts are not unreasonable for many applications.
Cache-conscious allocation can speed up programs.

There are many good reasons to use the system allocator, but using it

comes with a performance cost.

. Avoiding unnecessary work is always advantageous.

Systems should provide alternative allocation functions.

Low object density leads to poor performance.



Appendix B

The Price of Tea

To help place this work in time and space, we provide the following economic,

technical, and physical indicators.

My CPU Speed: 1.5GHz

My Weight: 156 lbs.

Linux Kernel Version: 2.6.6

Number of States in the Union: 50

American National Debt: $7,193,909,860,082.37
Price of Gasoline: $1.95 per Gallon

25 Earl Grey Tea teabags: $3.30

Williams Tuition, Room, and Board (one year): $38,100
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